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Animated characters that move and gesticulate appropriately with spoken text are useful in a wide range of applications. Unfortunately, this class of movement
is very difficult to generate, even more so when a unique, individual movement style is required. We present a system that, with a focus on arm gestures, is
capable of producing full-body gesture animation for given input text in the style of a particular performer. Our process starts with video of a person whose
gesturing style we wish to animate. A tool-assisted annotation process is performed on the video, from which a statistical model of the person’s particular
gesturing style is built. Using this model and input text tagged with theme, rheme and focus, our generation algorithm creates a gesture script. As opposed to
isolated singleton gestures, our gesture script specifies a stream of continuous gestures coordinated with speech. This script is passed to an animation system,
which enhances the gesture description with additional detail. It then generates either kinematic or physically simulated motion based on this description. The
system is capable of generating gesture animations for novel text that are consistent with a given performer’s style, as was successfully validated in an empirical
user study.
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1. INTRODUCTION

performing arm gestures, but the approach is also applicable to the
entire body.

People are engaged by characters with interesting personalities.
However, creating quality animation for generic characters that cor-
rectly coordinates appropriate gestures with spoken text is already
a challenging task. Generating movement that reflects a particular
personality significantly increases the challenge of the gesture an-
imation task, yet it is a goal towards which we must strive. This
work describes one approach towards that goal. We present a sys-
tem that allows the gesturing pattern of specific individuals to be
modeled and then generates animation for new text from this model,
complete with appropriate gestures and body movement that reflect
the original subject. The movement focus is on standing characters

The system operates in two phases: a preprocessing phase and a
fully automatic generation phase. The preprocessing stage is shown
in Figure 1. Producing animation of a particular individual begins by
collecting a video corpus for that person. In our case, we used two
talk show hosts as subjects, employing about ten minutes of film of
each. During an analysis step, the video is hand annotated in the tool
ANVIL [Kipp 2001], and both gesture and more general animation
data are extracted. A statistical model called a Gesture Profile is built
based on the annotated data. In addition, an Animation Lexicon is
constructed that contains data such as the normal hand orientation
for each gesture that we model. These two components provide
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Fig. 2. Automatic generation process.

the input for the gesture generation and animation stage. This tool-
supported analysis step allows us to generate a particularly wide
range of gestures.

Once the initial analysis phase is complete, and any novel input
text is tagged, the generation process is fully automatic, as summa-
rized in Figure 2. There are two paths in this pipeline. The bottom
path shows re-creation. Here, the annotated data from the video cor-
pus is mapped directly to a gesture script, which is then animated.
Re-creation can be used to produce animations of any annotated
segment in the corpus. This is useful for validating the annotation
and creating an animation of a specific performance. The second
path in the pipeline generates animation for any novel tagged text,'
which need not be in the video corpus. The gesture script is gen-
erated from the statistical model for the individual specified by the
user. This gesture script is passed to the Animation Engine, which
further refines the description of the motion, using data from the
animation lexicon and a set of rules described below. The animation
engine produces final animated output either kinematically, or using
dynamic simulation, at the user’s option.

Traditionally, modeling gesture production and gesture anima-
tion are handled by well separated systems. For instance, the ges-
ture specification system might only produce a gesture name, for
example, “beat,” that is then rendered by the animation system by
playing a preexisting clip. In this work, we take a more tightly cou-
pled approach that raises interesting issues of data representation
and flow: What data gets generated where? Some of the detailed
information needed to animate a gesture is best stored as part of
the gesture model, that is, on the generation side. This information

'In addition to linguistic data, the text input must include timestamps for
beginning and end of each word. This data is usually provided by the text-
to-speech (TTS) software.
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can be related to the model of a particular performer, the corre-
lations within a stream of generated gestures, or synchronization
with speech, or be definitional information for a particular gesture.
Modeling this data as part of the generation process allows greater
control for the gesture generation system and reduces the burden
of how much the animation system needs to “know” and model.
It frees the animation system from needing to access the gesture
model. At the same time, representing data on the generation side
can be costly in terms of modeling effort as it requires sufficient
video footage, annotation work and the construction of statistical or
rule based models. In keeping with principles of data encapsulation,
we also wish to minimize what the gesture system needs to know
about the animation system. To negotiate this trade-off, our gesture
generation system produces sparse data that captures the key defi-
nitional aspects of a gesture and provides good control. The details
of the motion are filled out by the animation system, which also
has additional information about the figure being modeled, gesture
types and the controls available. Specifically, the animation system
will complete timing information, deal with spatial conflicts and add
in a more rich description of gesture form as it augments the sparse
data it receives from the generation stage.

In comparing our system to a motion capture approach, as well
as noting the greater control afforded the generation engine in our
approach, it is worth examining the range of gestures our system can
produce. We currently model 28 different gestures in our animation
lexicon, each of which can be generated with either or both hands
in any of hundreds of spatial locations and with an arbitrary number
of after-strokes (Section 3). Thousands of different combinations
are possible and the animation lexicon can be easily extended. De-
veloping an appropriate motion capture database to cover this space
would be a daunting, if not prohibitive, task. Another strength of our
technique is that it can be used on any subjects for whom there is
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Fig. 3. Examples of eight frequently occurring gesture lexemes (cf. Table II). They are usually depicted with two frames from the same speaker, showing the
beginning and end of the stroke (Beat, Calm, FlingDown, Progressive, Wipe). Cup, PointingAbstract and RaisedIndexfinger are illustrated with a single frame

of JL and MR each, performing the same lexeme.

adequate film of them gesturing. This means that it can potentially
be used on subjects that are no longer alive or who cannot otherwise
be motion captured due to cost or availability.

Two talk shows hosts, JL. (Jay Leno) and MR (Marcel Reich-
Ranicki), are used as subjects in this paper. They have different
gesturing styles (e.g., Figure 3) and also speak different languages.
This illustrates an important point: our technique can be used to
create gestural animation for text in languages different to that spo-
ken by the subject. In our animation system, we employ a skeleton
model containing 89 degrees of freedom, including six degrees for
world space orientation and location and 21 degrees of freedom for
each hand.

In our approach to gesture synthesis we bring together a number
of features that have already been studied previously but not received
this level of attention:

—Determination of gesture phase structure.
—Precise timing for multiple strokes.

—Inclusion of the gesture’s spatial structure (location in space, cur-
vature in space, hand and wrist shape, arm swivel).

—Developing a broad range of gestures.

—Controller-based physical simulation of motion for gesturing.
Truly novel contributions of this article include:

—The selection and customization of gestures based on speaker-
specific statistical models. The “recognizability” of the generated
speaker-specific styles was confirmed with a user study.

—The development of data models at an appropriate level of detail
to encapsulate sufficient data for speaker-specific re-creation and
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effectively divide the modeling task between gesture generation
and animation components, while minimizing the annotation task.

—The production of contiguous gesture sequences, so-called g-
units, instead of singleton gestures.

—Joint space approaches for controlling motion curvature and gen-
erating progressives.

—The synchronization of dynamic character simulation with speech
production.

2. BACKGROUND

To generate and animate gestures from an input of tagged text is a
fairly recent endeavor, pursued in an interdisciplinary arena requir-
ing competencies from computer animation, artificial intelligence
and psychology. Cassell et al. [1994] developed a rule-based system
that generates audiovisual speech, intonation, facial expression, and
gesture by working on the input text’s information structure which
is still common practice today. Another common practice is to syn-
chronize the gesture stroke to the accented syllable of the coexpres-
sive word, although, as we will show, it makes sense to sometimes
synchronize the stroke with a different part of the sentence. Using
the same agent as Cassell et al., Noma et al. [2000] built the Virtual
Presenter where gestures can be added to a text manually or with
keyword-triggered rules. Animated gestures are synchronized with
the following word. While the number of possible gestures is very
small the focus was on how to implement meaningful rules from the
literature on good public speaking. The system takes into account
posture and eye contact with the audience. A more complex genera-
tion system is the Behavior Expression Animation Toolkit (BEAT)
[Cassell et al. 2001]. It takes plain text as input and first runs a lin-
guistic analysis on it before generating intonation, facial animation,
and gestures. Gestures are generated using hand-made rules and are
selected using priority values. While our system shares the overall
goal of BEAT, to create accompanying gestures for a given text, there
are a number of differences. In BEAT, a gesture is basically a “black
box” that is triggered by a hand-made rule. In contrast, our system
triggers gestures probabilistically and plans both the gestures’ in-
ternal structure (phases, timing, shape) and their macro-structure
(by creating so-called gesture units [Kendon 2004]). Moreover, we
produce a wide range of 28 different gestures® while BEAT seems
to focus on very few samples. Most importantly, our approach pro-
duces not only natural-looking animations but a character-specific
gesture style that intends to capture the individual differences of
human beings.

Stone et al. [2004] also use a data-driven approach to re-create
a specific person’s gesturing style. They re-arrange pre-recorded
chunks of audio and motion captured pieces of full-body move-
ment. Possible sentences are defined by a simple grammar. The
corresponding utterance is assembled from those speech phrases
and gestures that match the communicative function and minimize
the required amount of time warping and blending. However, the
range of both possible utterances and gestures is limited to what has
been pre-recorded. In contrast, in our approach we extract abstract
models of behavior that are then used to create and animate gestural
behaviour on totally new input. Other relevant animation systems
include EMOTE [Chi et al. 2000] which presents a kinematic sys-
tem for expressive variation of arm and torso movements that is
based on the analysis of Laban. Hartmann et al. [2002] present a

2This does not even take into account the large variation that we achieve with
different positions and varying phase structure, especially multiple strokes.
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kinematic animation system that realizes a gesture language that
they have developed. Our gesture representation shares many fea-
tures with theirs. We extend their representation in several ways:
an additional spatial dimension is modeled (swivel angle); both
world space and local hand orientation constraints are supported;
additional movement features like posture, trajectory, and tension
changes are modeled; and a more complex representation for after-
strokes is developed. Hartmann et al. [2006] extend their system to
add expressivity to their gesture synthesis by varying activation, spa-
tial and temporal extent, fluidity and repetition. Noot and Ruttkay
[2004] are also concerned with gesturing style. A style consists of
a dictionary of meaning-to-gesture mappings, motion characteris-
tics, and modality preferences. Combining style dictionaries yields
mappings for new cultural groups or individuals. In contrast to our
approach, their styles are handcrafted and model the behaviour of
stereotypic groups instead of real individuals. In addition, the place-
ment and frequency of gestures is fully determined by tags in the
input text, and gestures are modeled at a comparatively coarse level
since the paper’s focus is a style description language, and it is not
concerned with animation issues.

Koppetal.[2004a,2004b] present a gesture animation system that
makes use of neurophysiological research and generates iconic ges-
tures from object descriptions and site plans when talking about spa-
tial domains, for example, giving directions. Iconic gestures resem-
ble some semantic feature of an object referred to in the co-occurring
speech. Recent work on sign language generation by Henerfauth
et al. [2007] has looked at similar issues of spatial mapping in order
torelate ASL expressions to locations in space. In contrast, in our ap-
proach the domains are mostly non-spatial. Many iconics that occur
in everyday conversation are either metaphoric and therefore stan-
dardized [McNeill 1992] or verge on the emblematic (e.g., gestures
for actions like drinking or counting) and thus also standardized.
Therefore, Kopp et al.’s approach and ours can be considered com-
plementary. More in line with our approach is de Ruiter’s [2000]
Sketch Model where both gesture and speech originate in the same
module called a conceptualizer. Gestures are processed in data struc-
tures with unbound variables, so-called sketches, that can be filled
according to context and using a gestuary of concept-to-shape en-
tries. A gesture planner fills the remaining parameters like body
part (which hand(s)) and spatial locations and builds a final motor
program for the articulators. The model is not implemented but can
predict certain phenomena in gesture-speech synchronization. Our
approach shares the processing of underspecified gesture structures
which we call gesture frames.

Neft and Fiume [2005] present a system for modelling gesture-
like movements using physical simulation, but do not model a com-
plicated range of gestures or combine them with speech. Physical
simulation has been used for many years to generate character mo-
tion with two main approaches emerging: optimization techniques
that use physical laws as constraints [Witkin and Kass 1988; Popovic
and Witkin 1999] and simulation techniques that forward simulate
Newton’s laws to generate motion [Hodgins et al. 1995]. We take
a simulation approach, and in particular, follow on work in hand-
tuned control [Hodgins et al. 1995; Faloutsos et al. 2001] where
a proportional derivative (PD) controller is used at each character
Degree of Freedom (DOF) to generate the required torques to make
it move. As we have an underlying kinematic motion representa-
tion, our approach is also similar to the use of physical control to
track motion capture data presented by Zordan and Hodgins [2002],
and our hand model is similar to Pollard and Zordan [2005]. To our
knowledge, this is the first use of forward simulation on a charac-
ter of this complexity that must synchronize its movements with
speech.
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Table

L

Number of gestures per unit for our speakers JL and MR in comparison with McNeill’s
subjects. The table shows that JL and MR use units with more than one gesture much more

often than McNeill’s subjects.

Total Number
1 2 3 4 5 6 >6 of Units
JL 35.7% 157% | 17.1% 57% | 11.4% | 5.7% 8.6% 70
MR 33.3% 16.7% | 11.1% | 14.8% 9.3% 37% | 11.1% 54
McNeill | 56% 14% 8% 8% 4% 2% 8% 254

3. UNDERSTANDING GESTURE

A good way to approach a concept as diffuse and organic as gestures
is to look at their temporal structure which can be nicely described in
terms of phases, phrases and units [McNeill 1992; Kita et al. 1998;
Kendon 2004; McNeill 2005]. A single gesture can be described as
consisting of a number of consecutive movement phases. This can
be expressed by the following rule:*

GESTURE — [preparation] [hold] STROKE [hold]. (1)

Only the stroke phase must occur in every gesture, all other phases
are optional. The stroke is the “most energetic” and “meaning-
carrying” phase of the gesture while in the preparation phase the
hands are moved to the stroke’s start position. The hold phases be-
fore and after the stroke are optional pauses, usually interpreted
as a means to correctly synchronize the stroke with accompany-
ing speech. The stroke can consist of multiple repeated movements
which would make it a multi-stroke.* Since the first stroke in a multi-
stroke is often the most pronounced and the following strokes have
similar form but look weaker than the first, we call the first stroke
the main stroke and all subsequent strokes after-strokes:

STROKE — main_stroke (after_stroke)*. 2)

After-strokes are almost like small gestures themselves, each with
their own preparation-stroke-hold structure. This becomes relevant
in actual animation as elaborated in Section 6.5.

The complete GESTURE is also called a gesture phrase (g-phrase)
in the literature. Opposing McNeill’s claim that every gesture has
a stroke, Kita et al. [1998] found that some gestures have a single
meaningful still phase instead, called an independent hold.> Imagine
the prototypical “raised index finger” where the hand is raised, held
still and retracted: instead of an energetic stroke there is only a single
hold phase, therefore called an independent hold. We distinguish
two principal gesture types, stroke gestures (S-GESTURE) and hold
gestures (H-GESTURE), and expand rule (1) to the following three
rules:

GESTURE — {S-GESTURE | H-GESTURE} 3)
S-GESTURE — [preparation] [hold] STROKE [hold]  (4)
H-GESTURE — [preparation] hold. 5)

We call a rest position a pose where the hands either hang down at
the side or are supported in some way: for example, arms lie on an
arm rest, arms are folded, hands are in pockets or are locked behind

3Nonterminals are set in smallcaps, terminals in boldface, and optional ele-
ments are put in square brackets.

4Kita et al. calls them multiple strokes, Hartmann et al. [2005] calls them
repeats.

3In his latest book, McNeill [2003] acknowledges the existence of indepen-
dent hold but calls them stroke holds.

one’s back. A gestural excursion always starts from a rest position,
can encompass one or more gestures and finally returns to a rest
position. Such an excursion is called a gesture unit (g-unit). For
gesture generation, the g-unit is an important organizational entity
as it groups together multiple gestures in one continuous flow of
movement. A unit always ends with a retraction movement to a rest
position.

UNIT — (GESTURE)" retraction. (6)

A unit can consist of a single gesture. McNeill [1992] actually found
that his subjects frequently perform only one gesture per unit (only
44% of the time would his subjects perform more than one ges-
ture per unit). However, his subjects consisted of people who were
neither trained nor experienced in speaking in public or on TV.
In contrast, our data of professional TV performers shows a com-
pletely different picture. Table I shows how often the different g-unit
sizes occured. Our speakers frequently combine multiple gestures to
units: MR uses units with more than one gesture 66.7% of the time,
JL 64.3% of the time. We believe that this is one reason why JL’s
and MR’s gestures are enjoyable to watch: the speakers produce
a fluent stream of continuous gestures instead of isolated single-
ton gestures. One aim of our project was to transfer this quality
to synthetic agents. In follow-up work [Kipp et al. 2007], we have
validated our hypothesis, demonstrating that the the use of gesture
units rather than singleton gestures is perceived to be more natural,
more friendly, and more trustworthy. Consistent with this, the use
of singleton gestures was perceived to show greater nervousness.

3.1 Gesture Lexicon and Lexemes

It follows from the encountered usage patterns that since we want
to produce gesture behaviour that looks characteristic for a certain
person, we need to produce a broad spectrum of gestures. Previous
work focussed on a limited range of specific gestures in order to
work out details, for example, about the semantics-form relationship
between speech and iconic gesture [Kopp et al. 2004b]. However, in
our target domain, iconic gestures that need a deep understanding
of semantics and form rarely occur.

In everyday conversations, but also in talk shows and formal pre-
sentations, human speakers use mostly gestures where no strong se-
mantic function is visible. McNeill calls these gestures metaphorics
since the relationship between the gesture and what is said is only
etablished through an abstract metaphor. For instance, in a progres-
sive gesture the speaker’s hands revolve around each other in circles.
McNeill argues that the gesture refers to the abstract notion of a for-
ward rotating wheel which in turn refers to a co-occuring word in
speech like, for example, going, developing, or even future. These
are the gestures we focus on. However, do these gestures share a
common form or is their shape totally arbitrary and invented on the
fly?
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Table II.

The table shows the six most frequently used
lexemes for each speaker and how often the
particular lexemes are used (in %). Figure 3

illustrates all of these particular lexemes, except for
PointingPerson, HandClap and Shrug which have

self-explaining labels.

JL MR
lexeme % | lexeme %
Cup 244 | Cup 6.9
PointingAbstract 8.9 | RaisedIndexfinger 6.9
PointingPerson 6.7 | FlingDown 5.8
HandClap 6.7 | Wipe 5.8
Shrug 6.2 | Beat 53
Progressive 44 | Calm 53

While it is common knowledge that emblematic gestures (e.g.,
the victory sign or the thumbs-up gesture) are drawn from a shared,
though culture-specific, lexicon, it became clear only recently that
this is also true for more abstract gestures. Webb [1997] showed for a
number of speakers that they use metaphoric gestures from a shared
lexicon of forms (see also Kipp [2004]). Although each speaker
applies slight variations and only uses a subset of these gestures,
there is basically one large reservoire of gestures that all speakers
draw from.® In our approach to gesture generation we exploit this
insight to represent gestures as lexicon entries, so-called lexemes,
which can be considered equivalence classes with respect to form
and function.

Kipp [2004] collected a lexicon of gestures for two German TV
show hosts. To this work, we added a new speaker with a different
language: the American talk show host JL. We assembled a gesture
lexicon of 39 lexemes’ and annotated a video corpus (Section 4).
Of this gesture lexicon, MR uses a subset of 31 lexemes and JL
uses 35. The large overlap of 27 lexemes that both MR and JL use
supports the hypothesis of a shared lexicon of gestures that all people
use. Figure 3 shows sample frames for the most frequently occurring
gesture lexemes. Some gestures are depicted with two frames, taken
at the beginning and end of the stroke, others with a single frame of
JL and MR each performing the same lexeme.

While the gesture lexicon represents what is shared between
speakers, the specific subset that each speaker uses and the frequency
of each lexeme are significant aspects for modeling interpersonal
differences. As Table 1l shows, the speakers differ significantly in
what lexemes they use and how often they perform a particular lex-
eme. As we will show in the following section, we further model
the variations of gesture form between each speaker and generate
particular lexemes in correlation with a speaker’s tendency to use
those lexemes for a given speech segment.

Such common reservoires of gestures may be culture-specific. While inter-
cultural differences are well explored for emblematic gestures [Axtell 1998],
[Saitz and Cervenka 1972], there is only sparse literature about this aspect
for more abstract gestures like metaphorics [McNeill 2005], [Calbris 1990].
7Note that the animation engine currently only models a subset of 28 lexemes.
This is partly due to rare lexemes that occur in the video corpus but were
never generated in our examples because of their low probability and partly
due to gestures whose shape must be determined by semantic knowledge
not modeled by our system.
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4. ANALYSIS

To automatically generate and animate gestures in a speaker-specific
style, a human speaker has first to be studied and analyzed. Using
a combination of manual labour and automatic data extraction, the
key factors of speaker gesture behaviour are then stored in machine-
readable form for automatic gesture generation and animation.

Figure 4 gives a schematic overview of the analysis process. First,
a video corpus for each speaker is annotated by hand. Both speech®
and gestures are transcribed by human coders. This annotated cor-
pus is used for three purposes. First, all annotated gestures are stored
in the GestureDB database, as templates for automatic generation.
Second, key properties for each gesture lexeme, especially the re-
lationship between gesture and speech, are modeled with statisti-
cal tables. Both the GestureDB and the statistical model are stored
in speaker-specific gesture profiles. Third, for animation, speaker-
specific lexeme properties are modeled in the animation lexicon
(Section 4.1.3).

4.1 Subject Annotation

The video annotation serves to translate essential concepts in the
source video material into a machine-readable form. A human coder
annotates linguistic entities (e.g., words) and gestural entities, in-
cluding temporal boundaries, on tracks on an annotation board
(Figure 5). In order to check how well the annotation captures what
happened in the original video we can feed it directly to the anima-
tion system, doing what we call a re-creation of the original behavior
(Figure 2). This is similar to what Frey [1999] called re-animation,
and Martin et al. [2006] call copy-synthesis. The manual annotation
is a work-intensive process: 1 minute of video takes about 90 min-
utes of coding by a human coder. However, coding can be done by
anyone after a brief period of training; no special knowledge of ani-
mation or linguistics is required. To support manual annotation, we
use the video annotation tool ANVIL [Kipp 2001] and the phonetic
analysis tool PRAAT [Boersma and Weenink 2005].

4.1.1 Speech Annotation. The linguistic part of the annotation
consists of coding words, discourse segments and information struc-
ture. We use the PRAAT tool to perform a word-by-word ortho-
graphic transcription of the utterance, including the words’ bound-
aries, which is imported to ANVIL. Words must be grouped into
sentence-like units. We use clauses as defined by Rhetorical Struc-
ture Theory (RST) [Mann and Thompson 1988]. However, any kind
of discourse segmentation works with our approach. Finally, infor-
mation structure is annotated using the concepts of theme, rheme and
focus [Steedman 2000]. The theme is the part of the utterance that
links the utterance to the previous discourse and specifies what the
utterance is about, whereas the rheme relates to the theme and spec-
ifies something novel or interesting about it. Following Steedman
[2000] we also annotate the focus, which is the part of the rheme or
theme that distinguishes the rheme/theme from other alternatives the
context makes available. We make the simplifying assumption that
the emphasized word or phrase is the rheme’s focus. For example:

During the battle [rebel spies managed to steal se-
cret plans to the Empire’s ultimate weapon the Death
St_ar]rheme

In the example the first three words refer to a battle that is introduced
in the preceding sentence which makes it the theme of the utterance.

8Word and phoneme boundaries and timings are marked. At the minimum,
phoneme information could be extracted automatically using current tools,
for example, CMU Sphinx.
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Fig. 5. The ANVIL video annotation tool allows human coders to efficiently encode time-aligned information for digital video. During analysis, a video
corpus for each speaker is transcribed for statistical modeling of gesture behaviour. The bottom window contains the multi-track annotation board where coding

takes place.

The bracketed part, the rheme, introduces the new information. And
since “the Death Star” is emphasized it is the focus of the rheme.

4.1.2  Gesture Annotation. The gestural part of the annotation
follows the hierarchical organization of gestures in phases, phrases
and units, as described by rules (3)—(6) in Section 3. The human
coder transcribes gestures in the video by adding annotation ele-
ments to three gesture annotation tracks in ANVIL. In the screenshot
(Figure 5) these tracks (phase, phrase and unit) can be found at the
bottom of the lower window; a schematic view is given in Figure 6.
For each annotation element, the coder specifies begin and end times
and then fills a number of attributes (attributes are displayed in the
top right window in Figure 5). In the top track, called phase, gesture
phases are transcribed following instructions by Kita et al. [1998].
The annotation elements contain one attribute for the phase type:
preparation, stroke, hold, etc. The coder has a second attribute to
specify the number of strokes if the phase is a multi-stroke.

On the second track, called phrase, several consecutive phases are
combined into a gesture (e.g., Frame, Cup and Wipe in Figure 6). In
Figure 5, the currently selected gesture, “Erruptive,” is highlighted
by a blue frame, and all its attributes are displayed in the top right
window. Following instructions in Kipp [2004], we annotate the
following attributes for each gesture: lexeme, handedness, lexical
affiliate and co-occurrence (Table IV). The lexeme denotes the lex-
icon entry that the gesture corresponds to (e.g., Frame, Cup, Wipe).
Handedness denotes the executing hand(s). The lexical affiliate is
the word or phrase that corresponds to the meaning or function of
the gesture [Schegloft 1984]: for instance, “he” or “this” for a point-
ing gesture or “driving” for a metaphoric progressive gesture. Since
the lexical affiliate and the gesture do not always co-occur [McNeill
2005], the coder also specifies the word that the gesture co-occurs
with. In Figure 5 the lexical affiliate to the current gesture is “air-
ing out”, highlighted with a red frame in the top track, while the
co-occuring word “theater” is highlighted with a green frame in the
top track.
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Fig. 6. Gesture annotation entities on three tracks.

Table III.
Our three dimensions for hand position and one dimension for
elbow inclination are divided into discrete intervals for

annotation.
| Height | Distance | Radial Orientation | Elbow Inclination |
above head far far out orthogonal
head normal out out
shoulder close side normal
chest touch front touch
abdomen inward
belt
below belt

We extended this scheme by adding information about the shape
of the gesture [Kipp et al. 2006]. For each gesture, the coder specifies
the trajectory (curved or straight) and hand/arm positions at the
beginning and end of the stroke (s-gesture) or at the beginning of
the independent hold (h-gesture).

Each hand/arm position is specified by a 4-vector p = (h, d, r, s)
for height, hand-body distance, radial zone and arm swivel angle.
Each dimension of p has 5-7 discrete values (Tables III and IV).
For bihanded gestures, we additionally specify the hand separation
(see Figure 5). Although hand separation could be computed from
the position data (radial zone), the resulting range of values would
be very small and it would be difficult to decide whether the hands
touch. For hand separation annotation, we extended ANVIL: coders
can edit 2D points on the video screen and store these points in an
annotation element. Hand separation is annotated with two points,
located at the middle of each palm, in the gesture phrase annota-
tion element (middle layer in Figure 6). The shoulder width is also
encoded and used to normalize hand separation.

Since this data is expensive to annotate we devised a minimal
coding scheme that is sufficient to re-create the original gesture to
a reasonable degree. More precise approaches to transcribing posi-
tional features (e.g. Frey [1999] or Martell [2004]) would increase
the annotation effort by a factor of 2—-10.

Note that we do not encode handshape and palm orientation in
the manual annotation process. Palm orientation is assumed to be
equal for each lexeme and is thus encoded in the Animation Lexi-
con (Section 4.1.3). Handshape is heuristically generated at runtime
(Section 5.2.2) by selecting from a range of legal hand shapes which
is predefined for each lexeme.

On the third annotation track, the coder groups together contigu-
ous gestures, that is, they are not interrupted by a full retraction, to
a single unit. Every unit thus ends with a full retraction unless the
video ends in mid-gesture. The unit element also stores the retrac-
tion position of the unit’s last gesture (e.g., hands at side or hands
clasped).

In Table V we show the size and contents of the annotated corpus
for the two speakers JL and MR. Both corpora are of similar size. It
is also interesting that both speakers seem to have a similar gesture
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frequency, since speakers can differ noticeably in that respect [Kipp
2004].

4.1.3  Producing an Animation Lexicon. The animation lexicon
is created as part of the annotation process and records additional
information for each gesture lexeme. Whereas the previous anno-
tations recorded data for each gesture sample in the corpus, only
one entry is made in the animation lexicon for each gesture lexeme,
irregardless of how many times a lexeme occurs in the corpus. This
reduces the total annotation effort required. The data that is included
in the lexicon is summarized in Table VI and will be described in
more detail further on. As can be noted from the table, data items
are only added when needed and for most lexemes only a partial set
of data is required.

The animation lexicon contains three main types of data: hand
orientation, torso posture and data for after-strokes. Hand orienta-
tion is specified by rotation around the forearm and two rotational
degrees of freedom in the wrist. These values can be specified ei-
ther as joint angles or as constraints to be met in either world space
or the character’s chest space (the latter moves with the character
and often proves more natural than a world space constraint). This
information is definitional for almost all gestures and was recorded
for every lexeme. As an example, a “cup” or a “shrug” will always
have the palm facing up whereas a “dismiss” will have the palm
facing down and end with a bent wrist.

Posture data includes spine and collar bone movements that are
either definitional for the gesture or characteristic of the particular
character. For instance, the chest will normally be opened (backward
movement of the collar bones) during a “wipe.” JL breaks with
normal convention and in our data does not raise his shoulders during
a “shrug.” We use a reduced DOF posture parameterization based on
[Neff and Fiume 2006] to represent this data. Specifically, the shape
and intensity of spinal curvature in the coronal and sagittal planes can
be specified, along with the amount of axial rotation; spinal rotation
can be specified; collar bones can be moved up or down and forward
or back, either in parallel or opposition; weight shifts, moving the
arm out from the character’s side and pelvic twists are also possible.
Thirty percent of our lexemes included some posture data and in
cases such as a “wipe,” it can be very important. Multiple possible
posture changes can be specified for a given lexeme. At runtime,
one of these will be chosen randomly without reference to other
data defining the specific lexeme. Modeling correlations between
posture changes and particular instances of a lexeme would likely
be a beneficial addition in some cases, but would also increase the
annotation overhead.

Recall that after-strokes are the small stroke repetitions follow-
ing the main one in a multi-stroke. They carry similar meaning, but
may differ in form and extent from the main stroke. They are gen-
erally smaller in amplitude and confined more to wrist and forearm
movement. The prep and stroke data for these movements consists
of forearm rotation, hand rotation, vertical or horizontal positional
offsets, and elbow bend offsets. One prep and stroke are optionally
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Table IV.
The human coder specifies a number of properties for every gesture in the video. The g-phrase annotation element captures the
gesture’s semantic and temporal relation to speech and its form and development in space.

5:9

| Encoded Property | Encoding | Description |
lexeme {Cup, RaisedIndexfinger, Wipe, Name of the gesture in the shared lexicon of conversational gestures.
Progressive, ...}
handedness {LH, RH, 2H} Hand which performed the gesture (LH/RH), or both (2H).

lexical affiliate link to word(s) in the speech track

The word or phrase in speech that semantically corresponds to the gesture,
e.g., “you” for a deictic gesture to the addressee, or “going” for the
gesture “Progressive.”

co-occurrence link to word(s) in the speech track

The words that temporally co-occur with the stroke of the gesture.

trajectory {straight, curved} Whether the gesture trajectory is straight or curved.

location 1 4-vector (height, hand-body distance, radial Location of the hand(s) at the beginning of the stroke or independent hold.
zone, arm swivel)

location 2 4-vector (height, hand-body distance, radial Location of the hand(s) at the end of the stroke. Only for s-gestures.
zone, arm swivel)

shoulder width screen distance Width of the shoulders in the current frame (used for normalizing hand

separation). Only for 2H gestures.

hand separation 1 screen distance

Hand separation at the beginning of the stroke or independent hold. Only
for 2H gestures. Empty if view angle unsuitable.

hand separation 2 | screen distance

Hand separation at the end of the stroke. Only for 2H s-gestures. Empty if
h-gesture or view angle unsuitable.

Table V. The Size of the Annotated Corpus for

Speakers JL and MR
speaker  duration  #phases  #gestures  #units
JL 9:04 574 229 70
MR 8:31 496 192 54

specified to define each after-stroke and they are then repeated for
each repetition.

The lexicon also includes additional data that can be definitional
for certain gestures, such as warps to transition curves to change
the timing profile, and amplitude values for progressives. As an
example of such a change, a wipe gesture in which the hands are
moved from the centre out to the side will generally feature an
acceleration throughout the movement and will not look correct
with an ease-in ease-out transition. Such changes to the transition
can be achieved by specifying in the animation lexicon either a
warping of the interpolation curve or a change in joint tension.

Authoring of the animation lexicon begins with images of each
lexeme that serve as reference material. These images are automati-
cally generated by the ANVIL annotation tool as shown in Figure 4.
For gestures with straight trajectories, these images show the start
and end pose of the stroke. For curved trajectory gestures, two in-
ternal frames are also generated. The annotation process is straigh-
forward: the annotator simply examines the images for features that
should be recorded in the animation lexicon (palm orientation, pos-
ture changes etc.) and then adds the corresponding data. If there are
significant differences in multiple lexeme examples, it is possible
to specify multiple versions of a lexeme with weights and one will
be chosen randomly at runtime. In practice, this is done only when
some example lexemes have a strong posture change that would
become noticeable if it was repeated identically each time the lex-
eme was triggered. No particular training is required to perform the
annotation, but a good ability to observe movement variation is an
asset. In our experience it takes about a minute to a few minutes to
annotate one gesture.

Animation lexicons are character specific, but we found for our
two characters that most of the data from one lexicon can be used

directly in the second. Posture variations appear to be the data most
related to one of our subjects, and hence are more likely to be cus-
tomized. The difference may be influenced by the fact that one
subject is seated, but this alone does not seem sufficient to account
for the variations observed.

4.2 Building a Gesture Profile

The annotated corpus is used to build a profile for the speaker’s
gesture behaviour. The profile consists of the sample database, Ges-
tureDB, a statistical model and average values. For the GestureDB,
the annotated information for each gesture in the corpus is stored
as a reproducible “gesture sample” of the specific speaker. These
samples can be seen as high-level movement patterns that can be
easily modified in a meaningful way.

The statistical model is automatically computed from the annota-
tions. It models estimated probabilities and is used in generation to
trigger gestures, to predict where they are placed relative to speech,
and to determine parameters like handedness and frequency. To build
the model, the speech transcription needs a two-step preprocessing.
In a first step, morphological analysis maps words to their lemma
(e.g., striking— strike, won— win).

In a second step, phrases, consisting of lemmas and/or words,
are mapped to semantic tags. These tags abstract away from the
speech surface structure and partially capture aspects of semantics
and communicative function. In generation they are responsible for
triggering gesture candidates, based on the assumption that similar
gestural forms can express the meaning of the subsumed words. We
use a total set of 87 semantic tags. A subset of 28 frequent semantic
tags together with samples from the corpus is shown in Table VII. In
our approach we employ look-up tables both for morphological anal-
ysis and semantic tagging. However, both tasks could be automated
using off-the-shelf software® or semi-automatic approaches. '

9For instance, MORPHIX for lemmatization [Finkler and Neumann 1988].
10For instance, WordNet [Miller et al. 1990] for semantic modeling as used
in BEAT [Cassell et al. 2001].
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Table VI.

Parameters that can be defined as part of the animation lexicon. The frequency field indicates what portion of lexicon entries include each

type of data for the corpus used in this paper.

| Data |

Description

Frequency of Use

Hand Orientation

Constraints on wrist angles and/or forearm rotation expressed in either the
local or chest frame. Can be specified for the start and end of a pose.

100%

Posture Parameters

Curvature to the spine or offset to the collarbones based on the
parameterization presented in [Neff and Fiume 2006]. Balance and
pelvic tilt adjustments may also be included.

17% collar, 20% spine

Progressive

Controls the scale of forearm and wrist rotation during a progressive.

Only used with progressives and
regressives.

Tension Changes

Change tension to high, medium or low for a given joint either at the start or
during a stroke.

not currently used

prep-stroke-hold afterstroke.

Transition warps Warps the timing of the transition from the start pose to end pose of a stroke. | 10%
Multi-stroke form Can be specified for a stroke or prep and stroke phase. Data includes a 43%
vertical and horizontal offset to hand position, change to hand and
forearm rotation and an offset in elbow bend.
Multi-stroke timing Percentage of time that should be used for a stroke and for a hold in a 13%

This table shows a subset of the semantic tags used and the corresponding words from the corpus (only the English ones).

Table VII.

Lemmatized words are mapped onto these language-independent tags to achieve a semantic abstraction from the surface

words.
| Semantic tag | Words from the corpus || Semantic tag | Words from the corpus

ADDRESSEE ‘you’ NUMBER ‘six’ “first” ‘second’ ‘third’

AFTER ‘after’ PERS_NAME ‘President Bush’ “Zorro” ‘Michael
Jackson’ ‘Princess Leia’

AGGRESSION ‘attack’ ‘crack down’ ‘civil war’ PERS_PRONOUN_OTHER | ‘they’ ‘he’ ‘she’

‘strike’ ‘battle’ ‘weapon’

AGREEMENT ‘yes’ PERS_PRONOUN_SELF T

BEFORE ‘last’” ‘ago’ POSSESSIVE_OTHER ‘their’ ‘her’

CONIJ_SEQ ‘and’ POS_AFFECT ‘encourage’ ‘win’

DEIC_HERE ‘here’ ‘today’ ‘now’ PROCESS ‘open’ ‘air out’ ‘send’ ‘practise’
‘drink’ ‘create’ ‘manage’
‘pursue’ ‘restore’

DEIC_THERE ‘there’ QUEST_PART ‘why’

DEMONSTRATIVE | ‘those’ ‘that’” ‘this’ QUEST_PART_PERS ‘who’

DESTRUCT ‘cancel’ ‘destroy’ REL_PRONOUN ‘what’

DISTANCE ‘long” “far’ THERE_IS ‘there is’

LOCOMOTION ‘come’ ‘getin’ ‘go’ ‘go up’ ‘race’ TIME_POINT ‘Tuesday’ ‘Monday’ ‘Wednesday’

NEGATION ‘dont’ ‘not’ ‘no’ TITLE ‘Star Wars’ ‘Revenge of the Sith’
‘American Idol’ ‘galactic
empire’ ‘Death Star’

NEG_EVAL ‘wrong’ ‘horrible’ ‘sinister’ TOTALITY ‘all” “all you people’ ‘whole’
‘entire’

For gesture generation we want to know how frequently the mod-
eled speaker uses a particular gesture lexeme in conjunction with a
particular semantic tag. We take the lexical affiliate annotations to
estimate the conditional probability of gesture lexeme / occurring
with semantic tag s over our corpus C = (G, S) consisting of all
occurring gestures G and semantic tags S by

N #{g € G : lexeme(g) = [ A lexaffil(g) = s}
P(|s) = .
#S
These values define a probabilistic mapping from semantic tags to
lexemes: For each semantic tag s we obtain many rules s — /; with
a “confidence value” P(l;|s) € [0, 1]. Since the semantic tags are
language-independent the resulting gesture profiles can be used for
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any target language; we use them for German and English. We also
store bigram models P(/;|/;_,) for lexeme sequences, i.e., the prob-
ability that lexeme /; follows lexeme /; ;. To model a speaker’s pre-
ferred handedness and handedness shift patterns we utilize the uni-
gram probability estimation P(h), the bigram estimation P(hilhi_)
and lexeme-relative handedness P(h|l), where h € {LH, RH, 2H}.
Observation showed that the way multiple strokes (i.e., repeated
strokes) are used or not used can be very characteristic for a speaker.
We therefore store the average number of strokes g okes per lex-
eme. To model the timing offset between gesture and speech we also
record the average time difference A7,,; between end of word and
end of stroke (for hold gestures we record the start time difference
ATjg4r). Finally, on a higher level we record gesture rate which is
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Fig. 7. The NOVA gesture script generator.

the number of gestures per minute because the amount of gesture
activity also seems to be quite characteristic for a given speaker.

5. GESTURE GENERATION

Once a speaker profile was created, our system can process any text
input and produce an animation with accompanying gestures. This
“runtime” system consists of two components: the NOVA!! gesture
generator, described in this section, and the animation engine, de-
scribed in Section 6. NOVA processes the input text and produces a
gesture script for the animation engine (Figure 7).

The input text must contain some additional information. For
each word, the beginning and end time must be specified which
is usually delivered by the text-to-speech (TTS) software. The text
must also be segmented into utterances and contain information
about the theme, rheme and focus of each utterance (Section 4.1.1).
For gesture generation, the input is transformed to a graph structure,
which is then processed in four stages:

(1) Gesture creation
(2) Gesture selection
(3) Unit creation

(4) Unit planning

The output is written to a gesture script which contains character-
specific gestures, organized in units, with locational and timing pa-
rameters for animation.

5.1 Gesture Frames and Generation Graph

To generate, select, and plan the gestures we use a graph structure to
represent both speech and gestures (Figure 8). Generated gestures
are inserted as arcs in the graph and represented as feature struc-
tures, so-called gesture frames. The underspecified frames become
gradually enriched during generation using the speaker’s profile and
contextual constraints.

The input text is used to construct the initial graph. For each word,
anode representing the begin time is created. While nodes represent
time points, arcs represent concepts with a temporal duration: words,
utterances, theme/rheme/focus. Words are mapped to lemmas that
are added as arcs. Likewise, lemmas are mapped to semantic tags
and added to the graph. Not every word has a semantic tag. With
our current mapping we find semantic tags for 39% of the words.

""'NOnVerbal Action Generator.

5.2 Gesture Generation Algorithm

5.2.1 Gesture Creation. In the first step we produce many can-
didate gestures for the given text by adding gesture arcs to the graph.
For this, we use the concept-to-gesture mapping from the speaker’s
gesture profile (Section 4.2). For each rheme p, for each semantic
tag s in p, we produce an underspecified gesture frame of lexeme
1 iff P(l|s) > 0.1. Additionally, we place a copy of this frame on
the nearest focus within p. This simulates the phenomenon that ges-
tures sometimes do not synchronize with their lexical affiliate like
in “destroy an [entire planet]” where a Wipe gesture is performed
on the bracketed part, although “destroy” is the lexical affiliate. The
added gesture frame is represented by an arc that stretches across s,
indicating the gesture’s temporal position.

5.2.2  Gesture Selection. In the next step, we select candidates
and specify handedness and handshape. A path of nonoverlapping
gestures is selected using the gesture rate to determine the desired
number of gestures N. We then select the most likely sequence
of gestures (g, ... , gnv—1) [Jurafsky and Martin 2003], that is, the
sequence that maximizes

N—-1

[100:6 Pgils) + 0.4 P(gilgi1).

i=0

We model the sequence of gestures because of our observation that
some speakers use idiosyncratic combinations of gestures. Repro-
ducing these combinations is desirable. However, since our training
data is sparse we reduce the bigram’s weight. This might change
with larger corpora. The next step determines the handedness of the
gestures using a linear combination of estimated probabilities

P(hilhi_y) = 0.5P(hilg;) + 0.2P(h;) + 0.3 P(h;|h;_y),

where the weights were empirically determined and the handedness
is found by maximizing the probability of the handedness sequence
(hg, ..., hy_1). This model captures the observation that speakers
differ with respect to which hand(s) they prefer (LH, RH or 2H) and
how often they change their “handedness mode”. Figure 9 illustrates
the handedness model. The area of the circles indicates the absolute
(unigram) probability of a gesture being performed in this mode,
while the arrows and numbers indicate the probability (in %) of
switching from one mode into the other when going from one gesture
to the next.

Handshape is determined by consulting a lexicon where legal
handshapes for each gesture are specified (e.g., pointing can be done
with the index finger or the open hand). Handshape selection now
follows the rule of economy: if the handshape of the previous gesture
is a legal handshape for the current one, then keep it. Otherwise
change handshape to a suitable one.

After this stage of generation we have a sequence of gesture
frames where lexeme, handedness and handshape have been speci-
fied.

5.2.3 Creating Gesture Units. The gesture hierarchy of phases,
phrases and units is hypothesized to correspond to levels of speech
phrase organisation. For instance, Kendon [2004, 1980] suggested a
correlation between infonation units and g-units. Such concepts go
back to the hypothesis that speech and gesture originate from a single
source, called growth point [McNeill 1992] or idea unit [Kendon
1980]. In our algorithm we try to approximate these concepts. We
produce g-units by gradually merging gestures according to certain
criteria. First, we take the first and the last gesture within a discourse
segment and merge them with all in-between gestures to form a
unit, that is, adding a g-unit edge to the graph. Then, we cluster
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Fig. 9. Handedness transition diagrams for JL and MR show preferences which hand(s) are used for gesturing and how often this mode is switched. Circle
area indicates unigram probability, size of the arrows and number indicate transition probability between gestures. The diagrams show that MR uses 2H more
often than JL. Moreover, JL stays in one mode more often than MR, as the high probabilities on the 2H—2H, LH—LH, and RH—RH arcs show. A switch

from RH to LH and vice versa is rarely done by either speaker.

neighboring g-units by merging all units whose distance in seconds
is below a threshold 0,,,;. We found 6,,;;, = 1.5 seconds to be a good
value. The threshold could be made speaker-dependent: a high value
produces large units with many gestures, a low value produces more
isolated gestures.

5.2.4 Planning a Gesture Unit. For determining phase struc-
ture, positions and timing, we string together suitable samples from
the GestureDB and let emerging constraints guide the determination
of phases.

The phase structure (prep, stroke, hold, etc.) of a gesture G, de-
pends on the temporal constraints of neighbouring gestures G;_;
and G, 4. If there is enough space up front to perform a preparatory
motion (> .5 s) the gesture is assigned a preparation phase (which
is always the case for the first gesture in a unit). If a gesture has
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a preparation, the positions of the gesture are unconstrained so we
select a random sample of the respective lexeme from GestureDB.
If a gesture has no preparation we find a sample whose start location
best matches the end location of G;_;. The chosen sample is used
to specify positions, trajectory and type (s-gesture or h-gesture). To
create multi-strokes for an s-gesture we consult the average number
of multi-strokes, [syokes, fOr gesture G;. If figrokes €Xceeds a thresh-
old we generate a random number of after-strokes using the mean
value and standard deviation. If there is not enough space between
the gestures and fiyokes €Xceeds a yet higher threshold, then gesture
G4 is either moved back in time, where the speech-gesture offset’s
standard deviation is an upper bound on how far it can be moved, or
eliminated in favor of G;’s multi-strokes. For all other cases where
there is space between G; and G;;; we generate a hold between
them.
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Now the main stroke of G; can be precisely timed with speech by
aligning the end time of the stroke with the end time of the gesture’s
arc in the graph, which corresponds to the end time of the word(s)
that triggered this gesture. From this time point we subtract the
speaker’s average offset AT,,, for this lexeme. We hypothesized that
it is more important that gesture and speech end synchronously than
that they start synchronously. To compute the timing of after-strokes
we align all after-stroke end times with word end times enforcing
a minimum duration for each after-stroke. This proved to be an
efficient way of achieving after-stroke synchronization. For hold
gestures we use a similar method but align start times of word and
hold. Looking at the resulting animations with a virtual character we
found that although the timing was similar to the original speakers’
timing the gestures always seemed a little too late. Human speakers
can supposedly vary the timing of their gestures with great flexibility
because movements of the whole body, and especially the face,
all contribute to gesture-speech synchronization. Since our virtual
character has a comparatively limited expressiveness we make our
gesture timing more conservative by subtracting a general offset of
0.3 seconds for main strokes and 0.12 seconds for after-strokes.

Using this algorithm we generate the following types of ges-
tures: stroke, prep-stroke, prep-hold, prep-stroke-hold and stroke-
hold, where all the strokes can be multiple strokes. As the g-unit’s
last gesture must by definition have a retract phase we have to de-
termine to which rest position the hands return to. Observing the
video material we determined three different rest positions: hands
“at side,” “in pockets,” and “clasped.” While the retraction after a
unit could be modeled probabilistically we resorted to simple rules
that work on the temporal distance to the following g-unit: if small,
retract to “clasped”; if medium distance retract to “at side”; if far
retract to “in pockets.”

5.3 Body Movement and Gesture Script

Head and body rotations were generated to make the character look
more alive. The generation is rule-driven rather than data-driven.
The rules can fire on any kind of arc in the graph, in combination
with keywords that occur in the range of the arc. For instance, we
could write a rule that looks for an utterance arc U that contains
the keyword “you” or “yours.” If the rules fire, a rotation arc with a
target direction (left/right) is added to the graph at the same position
as U, meaning: the body rotates in the given direction when the arcs
starts and rotates back to the default frontal position when the arc
ends. This was inspired by findings that changes in body postures
occur most often at boundaries of discourse units [Cassell et al.
2001; Scheflen 1964].

Body rotation rules were crafted from our observations of the
subjects JL. and MR. JL’s monologue routine follows a clear pat-
tern. It consists of a series of jokes, each taking about 10 seconds.
Before a joke he turns right (JLs viewpoint), probably to read the
teleprompter, and before and after the punchline he often turns left to
address the bandleader. These special monologue units (joke open-
ing, punchline and others) were specifically annotated in the JL data.
Since MR is participating in a discussion, he rather turns to the per-
son he addresses and stays there for a while. For MR, we use the
utterance segment and keywords like “you” and “your” to trigger
body rotations toward an invisible addressee to the left or right of
MR. For our demo, we used the MR rules for text input coming
from neither the JL. or MR domain.

Head rotations are generated based on the generated body rota-
tions. Both subjects anticipate their body rotations by turning their
head a little earlier. JL also follows a gaze pattern in trying to dis-
tribute his gaze uniformly across the audience. Therefore, our algo-

rithm inserts anticipating head rotations before body rotations and
fills in random head rotations in-between body rotations.

The final graph is written to a linearized gesture script containing
the following data: head rotations, body rotations and gesture units
which contain one or more gestures and have a retract position speci-
fied. For each gesture the script specifies: lexeme, handedness, hand-
shape, type (e.g., prep+stroke+hold or prep+hold), stroke/hold start
time, multistroke start times, overall duration, number of strokes,
gesture start location, gesture end location (only for s-type).

The Appendix includes a sample snippet of a gesture script. It
begins with a preamble that defines the head and body rotations
for the entire sequence. This is followed by a sequence of gesture
units which are produced from the linearized graph. Each gesture
unit consists of a sequence of gestures which contain the data listed
above. Multi-stroke timing information is also specified as part of a
gesture. The retraction pose is specified at the end of each gesture
unit.

6. ANIMATION

The role of the animation system is to take the gesture script as
input and produce a final character animation sequence. It does this
by augmenting the data provided by the gesture script, mapping
this completed set of data to a form that can be animated, and then
producing an either kinematic or dynamically simulated animation.

The animation system used is an extended version of the one
described in Neff and Fiume [2005], which is built on top of the
DANCE framework [Shapiro et al. 2005]. Significant additions to
the system include the use of offset layers and a set of augmentation
processes that produce detailed animation specifications from the
gesture script. The focus of this section will be on the new aspects
of the system and how they are applied to the gesture animation task.
The reader is referred to Neff and Fiume [2005] and Neff [2005] for
other details on the system.

The system also generates facial animation for lip-synch [Cohen
and Massaro 1993] that takes into account coarticulation (i.e., the
influence of surrounding speech segments on the vocal tract shape
of a phoneme). Additional speech-related facial movement such as
eyebrow raises on stressed phonemes is added based on universal
rules [Albrecht et al. 2002]. Modeled variations between speakers
are at the moment restricted to amplitude and frequency of eyebrow
movement (very pronounced in JL, less salient in MR), but could
easily be extended to include, for example, speaker dependent facial
expressions for questions.

6.1 Underlying Representation

The prep-stroke-hold structure of gestures maps naturally to anima-
tion keyframes. Our underlying movement representation, therefore,
is analogous to a keyframe system. Every DOF in the character’s
body has its own track, partial body poses are stored at particu-
lar points in time and transition functions (cubic Hermite curves
embedded in space and time) control interpolation between these
poses.

Our representation extends a traditional keyframe system in two
ways. First, we support offset layers and second, we support non-
DOF tracks that can be used to adjust real time processes. For any
DOF, the desired value is determined by summing the main track
with the data on any associated offset layers. While offset layers
are a familiar tool for making low-frequency edits to motion cap-
ture data that preserve the high frequencies of the motion [Witkin
and Popovic 1995], we employ them differently. We use them to
add high frequency detail to our motion and also to layer different
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motion specifications together. The other novel type of track does
not contain DOF values, but is used to control more complicated re-
altime processes in the system. For example, some parts of the body
are controlled by real-time processes for gaze-tracking and balance
control. The desired constraints for these processes are specified
on these separate tracks in the underlying representation using the
same key and interpolation function primitives as with other tracks,
which supports continuous variation.

6.2 Data Augmentation

The gesture model needs sufficient control to correctly align ges-
tures with speech and to reflect the key idiosyncrasies of a speaker’s
gesturing style. Gesture data is divided between the gesture model
and animation engine in an effort to strike a balance between (A)
the need for the gesture model to control the motion, (B) the de-
sire to minimize the work required to annotate video for building
the gesture model, and (C) the desire to allow the animation en-
gine, which contains the relevant domain knowledge, to control the
low-level aspects of motion production. The gesture script (Sec-
tion 5.3) presents a minimal description of the required movements
that captures the key definitional aspects that must be controlled by
the gesture model. The animation system must augment this sparse
representation, filling in more detailed data and adding important
nuance. The process is one of refinement, continually adding more
detail to improve the gesture rendering. Such an approach also al-
lows for workload management as the animation can be generated
after minimal augmentation, but adding more data to the animation
lexicon will improve the quality of the animation.

The animation system performs a range of operations during data
augmentation. It will:

—complete timing information

—deal with spatial conflicts due to the sparcity of spatial sampling
—add necessary definitional information for different gesture types
—add character specific variation.

These items will be detailed below. Character specific data includes
global character properties [Neff and Fiume 2005], such as a default
posture or tendency to start movements quickly, as well as variations
on how a particular gesture is performed. Two global character prop-
erties were modeled for our subjects: default postures and a slight
forward succession to the movements. Significant use of two tech-
niques is made to augment the initial motion framework: keyframe
infilling and the addition of micro-keys. Micro-keys are parameters
that define partial body poses and can be layered on top of existing
keyframes. Keyframe infilling is a process by which new keyframes
are generated at locations in between the existing keyframes. These
can be micro-keys (partial specifications) as well.

6.2.1 Completion of Timing Data. The gesture script specifies
end times and durations for strokes as well as hold durations and
start times for body rotations. The rest of the required timing data
is determined by the animation planner, which can complete the
data and also adjust for dynamic effects. The start time for prep
movements is defined as:

prepStart = max(strokeStartTime
—defaultPrepTime, lastStrokeEndTime),  (7)

where defaultPrepTime is currently 0.4 s for preps within a gesture
unit and 0.8 s for preps following a rest pose as these will have a
longer distance to travel. A similar rule is used to determine the
duration of the transition to rest poses where the time between the
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end of the last hold phase and the next stroke must accommodate
both the transition to the rest pose and the subsequent prep phase. If
there is enough time, 0.8 s is allowed for each. Otherwise, the time
is split between the two movements, which is normally sufficient.
Head movements are given a duration uniformly distributed between
0.2 and 0.3 s or until the start time of the next head movement if
it is sooner. Body rotations are given a duration between 0.5 and
0.6s.

6.2.2  Spatial Augmentation. To ease the annotation task, a rel-
atively coarse spatial discretization is used to record gesture loca-
tions (Table III). This can lead to two problems: hand collisions
and lost information for small movements. When generating ani-
mation, the system will place the hands at the middle of the spatial
buckets corresponding to their discrete location tags from the an-
notation, which is generally sufficient, but can lead to conflicts. A
small number of gestures, such as a two-handed wipe (Figure 3),
feature the hands crossing over each other. When both hands cross,
they may be annotated with the same discrete tags and a small two
handed separation distance that will cause them to be placed in the
same location when the data is used for animation. A slightly more
common occurrence is for subsequent gestures to be given the same
spatial location when there should actually be a small movement
between them (even though both might still be in the same spatial
bucket). Both of these cases are automatically detected and offsets
are applied to the hands to correct them. A vertical offset is used to
separate overlapping hands and a downbeat is applied to sequential
gestures with identical locations.

6.2.3 Additional Gesture Data. In order to produce the final
animation specification, the gesture description provided in the ges-
ture script must be augmented with the additional data from the
animation lexicon (Section 4.1.3). For each lexeme in the gesture
script, the corresponding data is retrieved from the animation lexicon
and added to the animation specification. Recall from Section 4.1.3
that this information includes palm orientation, posture changes and
multi-stroke data. Most of this data is added to the animation spec-
ification using microkeys—augmentations to existing keyframes at
the stroke boundaries to specify specific DOF values such as wrist
orientation, spinal bend, etc. Some changes such as warps to the
transition curves are controlled using edits as described in [Neff
and Fiume 2005]. Maintaining separate animation lexicons for each
character allows character idiosyncracies to be modeled, such as
specific posture changes for a given gesture.

The system automatically varies collar bone angles based on the
gesture height. The form of after-strokes, which follow the main
stroke, is also defined in the animation lexicon and added as part
of the augmentation process. Both of these issues will be discussed
below, in Sections 6.3 and 6.5 respectively.

6.3 Pose Calculation

The system uses a combination of keyframe and continuous motion
generation techniques: discrete pose calculation with interpolation
is used for gesture generation, and continuous IK for balance con-
trol and gaze tracking. During a preprocessing phase, the animation
system maps the motion specification into the underlying represen-
tation that will be used to generate the motion. The poses for the
start and end of each gesture phrase are calculated and stored in
the DOF tracks. Body twists and certain posture changes are stored
on the offset tracks. Curves specifying the desired gaze direction
and balance point are stored on separate tracks. At each time step
during playback, realtime processes will use the IK routines to up-
date the lower body DOFs to meet the balance constraint. A second
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Table VIII. Base Offset Angles
Applied to the Collar Bones
Constraint Height | Base Offset (deg) |

above-head =5
head -3
shoulder -1
chest 2
abdomen 3
belt 5
below-belt 7
These are multiplied by a character specific scale
factor.

process will have the character look at the specified target by solv-
ing for the axial rotation of the head and neck, and the tilt of the
head. A gain factor, set to .5, controls how far the head moves be-
tween staring straight ahead and staring at the look-at target. The
remaining DOFs of the body will be determined from the other
tracks.

6.3.1 IK and Pose Determination. Rather than a monolithic IK
system that solves for an entire posture, we use a set of simple,
analytic IK routines that are each responsible for a portion of the
body. Lower body movement, including knee bends, pelvic rotation
and balance control, is based on an analytic lower body IK routine
and feedback based balance adjuster. To avoid stability problems in
dynamic simulation, springs are used to hold the character’s feet in
position and prevent him from falling. Analytic routines are used
for arm positioning, and aesthetic constraints are blended together
to determine the torso pose. The pose solver is described in Neff
and Fiume [2006], except that we disable the optimization routine
described there as we are not using spatial constraints to deform
the character’s posture in this work. We also augment that system
with automatic collar bone adjustments and add local IK routines to
achieve hand and wrist orientation constraints.

The process for calculating each pose in a gesture phrase is as
follows:

(1) Calculate the posture of the spine and collar bones. This re-
quires blending constraints for the character’s default posture
with posture constraints from the animation lexicon. Automatic
collar bone offsets are also introduced here.

(2) The arms are positioned to meet the wrist constraints specified
in the gesture description.

(3) The arm swivel angle is rotated to meet the inclination con-
straint.

(4) Constraints on palm orientation are solved.

The automatic collar bone adjustment offsets the shoulders up or
down based on the location of the reach constraint. The base offset
for each of the constraint heights is shown in Table VIII. These base
offsets are multiplied by a character specific gain value, which is 1
by default. Collar bone adjustment is important for increasing the
naturalness of arm movement. This adjustment reflects the biologi-
cal construction of the shoulder as the upper arm and clavicles are
not independent joints (for a discussion of models of the shoulder
complex, see Badler et al. [1992].)

The gesture targets used when positioning the arms are defined to
be relative to the current orientation of the body (cf. Table I1I), but are
not defined in the frame of a particular joint. For example, a shoulder
height target will remain at shoulder height as the character hunches
over. Each height target, such as “shoulder,” “chest,” or “abdomen,”
has a defined height within a particular limb in the skeleton, which

can be used to determine a world space height constraint. The radial
distance from the character’s centre and the distance in front of the
character’s body both lie on the world space horizontal plane with the
given height value. The distances from the character’s body (“touch,”
“close,” etc.) are defined relative to the body part the gesture is in
front of. The radial orientation however, is defined relative to the
chest. This means that a “front” radial orientation will be in front of
the chest even if it is at belt height and the torso is rotated. These
definitions perform well with the annotator’s expectations of the
markup scheme.

6.3.2  Specifying Body Rotations. Body rotation is discretized
into three directions (left, right, front) and gaze direction is dis-
cretized into five locations (left, left-front, front, right-front, right).
The exact values of these locations are specified for each character
based on the video corpus, with JL having larger rotations. Body
rotations are accomplished by a combination of a pelvic rotation
with opposing knee bend and a rotation of the abdomen and chest
spinal joints. Each of these rotations are offset in time by ten percent
of the rotation’s duration to give a more natural flow to the motion.
These rotations are specified on offset layers and blend with other
posture deformations.

6.4 Keyframe Refinement

In addition to the layering of micro-keys on top of existing keys,
as described in Section 6.2.3, some gesture attributes require the
creation of additional keys, as detailed here.

6.4.1 Path-in-Space. Whether a movement follows a straight
or curved path in space is an important expressive property. In our
previous work, we did not model this property [Neff and Fiume
2005]. Chi et al. [2000] in the EMOTE model represent it by varying
the trajectory of the arm end-effector and also provide three different
interpolation spaces: interpolating joint angles, end effector position
or elbow position. Similarly, Kopp and Wachsmuth [2004c] use
guiding strokes in space that allow the curvature of a motion to be
controlled. Unlike the previous approaches, we achieve satisfying
curved motions by working in joint space using offset curves, rather
than working in world space. This approach is simple and avoids
the need to determine and orient world space trajectories to try to
provide a natural path for the motion.

There are two main types of curvature we need for our gesture
lexicon: point-to-point curvature, where a single stroke follows a
curved path, and continuous circular movements for gestures like
progressives. The latter case will be discussed below. By default,
movements between two points in our system will produce a ba-
sically straight path.'> A curve can be added to the motion by in-
troducing an offset perpendicular to the path of the movement that
starts at zero, peaks near the middle of the movement, and returns
to zero. We normally apply these offset keys to the elbow and larger
amplitude offsets will produce a higher curvature motion. For exam-
ple, a “cup” movement that has the hand up and a largely horizontal
trajectory, can be curved by adding an offset to the elbow bend, as
shown in Figure 10.

6.4.2  Progressives. A progressive is a cyclical movement in
which the forearm and hand are moved in a circular loop in front of
the chest, first coming towards the body and up, then out from the
body and down (Figure 3). There may also be a translational compo-
nent as the centre of rotation is moved through space. Regressives

12Within the limits of basic quaternion interpolation of the shoulder, which
can introduce some warping to the path.
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(a) Straight Trajectory

(b) Curved Trajectory

Fig. 10. Comparison of a straight and curved trajectory for the same cup gesture.

consist of the same motion rotating in the opposite direction. A
progressive (or regressive) is specified by indicating in the gesture
script where in space it starts and stops, the number of rotations,
and which hand(s) are used. Multiple partial keyframes (keyframe
infilling) are then used to generate the motion. To our knowledge,
previous embodied conversational agent systems have not modeled
gestures with such complicated spatial trajectories.

The basic idea of how the curvature of the motion is created can
be understood by considering a 2-DOF pendulum. Applying ninety
degree out of phase sine waves to the pendulum will cause its end to
trace out a circular path. We apply this idea to the character’s forearm
and also apply similar rotations to the wrist. Instead of using sinu-
soidal interpolation functions, a key is placed at every 180 degrees in
the sinusoid and connected with ease-in ease-out curves, effectively
approximating a sinusoid. Since there is also translational movement
during the progressive, the overall movement is decomposed into
two components: one that determines the rotational movement with
the approximated sinusoids and one that specifies the translation in
space. The overall process is as follows:

(1) Determine the amplitude of the circular
movement

(2) Determine the time that each infilled
keyframe must occur at

For each infilled keyframe

(3) Determine the x rotation and
corresponding hand rotation

- OR -
(4) Determine the y rotation and

corresponding hand rotation
(5) Add the keyframe to the system

(6) Add an offset curve to account for elbow
translation

It is important that the scale of the rotation be proportional to the
range of the translational movement as one loop of tight rotation
stretched over a long distance tends not to have the look of a pro-
gressive. Consider the circle in Figure 11 as representing only the
rotational component of the movement. The circle has a particular
size, determined by the magnitude of the input sine waves, so covers
a certain area in space. The challenge is to relate this spatial size
created by the rotation to the overall spatial coverage determined by
the start and end constraints. More intuitively, it appears from our
samples that there exists a correlation between larger rotations and
larger translational components during a progressive gesture and
vice versa. To relate the two quantities, we determine the amount of
rotation (i.e., the magnitude of the sine wave) that would generate
a circle just large enough to span the two end constraints. A new
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end

start

Fig. 11. The wrist will trace a circular path during a progressive (ignoring
the translatory motion). Keyframes are located at the colored crosses. The
movement travels between the two small circles, along the arc of the large
circle.

quantity is defined, maximal rotational amplitude, a, which is the
amplitude that must be applied to the forearm to achieve this size
of rotational circle. This maximal rotation is then divided by the
number of cycles of the progressive, n, and a character weighting
factor, m, to determine the magnitude of rotation, «, for each loop
of the progressive (step 1):

@ = max (MIN_AMPLITUDE, mf), 8)
n

where MIN_AMPLITUDE is a minimum rotation that is provided
to still create a progressive if the end constraints are the same. The
character specific multiplier, m, is 1 by default.

In the final representation, the keyframes for the x DOF and cor-
responding hand movement will be placed at the green extrema
in Figure 11 and the y keyframes at the red extrema. By default,
progressives start at the position marked “start,” 5/67 for counter-
clockwise rotation, and end at the location marked “end,”—1/2x for
counter-clockwise rotation. The time of the keyframes is determined
by considering the total duration of the movement and the number
of cycles of the progressive and then calculating the appropriate
keyframe spacing (step 2).

Steps 3 and 4 determine the desired angles at each keyframe (note
that each keyframe has data for either x or y, but not both). Differ-
ent angle representations require different approaches. With Euler
angles, as we use at the elbow, the values are simply £« as appro-
priate. The shoulders are more complicated as they are represented
with quaternions and hence do not have a separate component cor-
responding to the axial upper arm rotation. In determining these
keys, we combine the rotational component of the progressive and
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Fig. 12. The path of a hand during a large progressive with a diagonal
translatory component. The colour gradation is used to show the progress of
time.

the overall translatory aspect of the movement that will be achieved
by x rotation.'3 We first update the orientation of the upper arm that
is used to move the hand between the end constraints:

qi = slerp(qo, q1, p), )

where ¢ is the quaternion satisfying the initial constraint, ¢, for
the final constraint, ¢; is the infill quaternion we are calculating and
p € [0, 1] is a progress variable indicating how far we are between
the beginning and end of the progressive. This calculation corre-
sponds to the translatory portion of the progressive. The rotational
component is achieved by rotating ¢; around a vector aligned with
the axis of the upper arm by +« as appropriate.

In step 5, these keyframes are added to the underlying represen-
tation. The translatory component of the elbow movement has not
been accounted for yet. This is done by adding a linear offset curve
for this DOF () that spans the translation (step 6).

An example of a fairly large progressive is shown in Figure 12.
Notice that there is a diagonal translatory component to the motion of
the gesture as well as the core circular movement of the progressive.
A trace of the hand’s path shows a circle stretched in time.

6.5 After-Strokes

A multi-stroke consists of the main stroke phase followed by a num-
ber of smaller repetitions we call after-strokes. Consider a “dismiss”
in which the character raises his arms and hands (prep), and then
flings his hands down, letting the wrists go limp (stroke), followed
by two small repetitions in which the character raises his hands
slightly and tilts his palms back up towards the audience before
moving the hands back down and dropping the wrists once again.
These repetitions are after-strokes.

There are at least two categories of after-strokes. The first consists
of essentially continuous, rhythmic hand waving at the end of the
stroke. MR frequently uses such gestures. The second has the same
prep-stroke-hold structure as the main gesture as in the “dismiss”
example above. The hold period in these after-strokes is particularly
important. When the dismiss is repeated without a hold phase after
the stroke, it disintegrates (disappears) into hand waving. The hand
appears to bounce up from the end of the motion and the definitional
downward aspect of the movement is lost without the necessary
pause at the stroke end. It should be noted that these “prep” and

3These two components correspond to a sinusoid in x and a linear ramp in
x that are summed to provide the final value.

“hold” phases mentioned here are not explicitly modeled in the
grammar rules of Section 3, but are contained in the notion of an
after-stroke.

Most data associated with after-strokes is local as they are nor-
mally rapid movements that are confined to the wrists and forearms.
The animation lexicon (Section 4.1.3) accepts any subset of the
following data to define an after-stroke pose: offset to vertical or
horizontal wrist positions, forearm rotation, wrist rotation (2 pos-
sible DOFs) and an offset to the elbow bend. This data is defined
separately for each of the two movements making up an after-stroke
(nominally, prep and stroke). It is only defined for one arm and
mirrored to the other.

After-strokes are created by keyframe infilling. Copies of the
stroke keyframe from the end of the main stroke are made and used
as the basis for both the prep and stroke poses of each after-stroke.
This is done as we wish to add small, local variation to the end
position of the main stroke, rather than copying the often larger
spatial movement of the main stroke. Additional attributes are then
added to these copies based on the data in the animation lexicon.

The timing of these keyframes is illustrated in Figure 13 and
calculated as follows. The duration available for the complete after-
stroke is d = e; — e;_;, and must contain the prep and stroke
associated with the after-stroke, plus the hold from the previous
stroke. This is because the time constraints ¢; and e;_,) from the
generation algorithm specify the end time of strokes. The animation
lexicon defines the percentage of time that should be spent on each
of the prep, stroke and hold phases. In the case of holds, the previous
duration, e;_; — e(;_), is used to calculate the hold time as the hold
corresponds to the stroke from that duration. If there is more time
in d than is required by the hold, the hold is expanded to fill the
available time. If there is less time, the actual hold is set to be the
average of the calculated time and the time available. The prep and
stroke phases then have their duration decreased to fit each phase
within d.

After-stroke durations may vary widely and we wish to reuse a
single definition for each after-stroke of a given lexeme. To avoid
unnatural movements when after-strokes are very short, limits are
placed on the average spatial and angular velocity of after-strokes for
kinematic animation (these limits are unnecessary in the dynamic
case). If these limits will be exceeded, the spatial or angular range
is reduced so that the average velocity is not exceeded.

6.6 Physical Simulation

Physical simulation can improve the realism of the resulting gestural
animation in several ways. First, it will smooth the motion in a
natural way. Second, there is very little basis in the collected data
for providing small torso deformations that are often caused by arm
movement during gesturing. Simulation allows the transfer of force
from rapid arm movements into the torso which can cause these
deformations and improve the realism of the motion. Third, the
damping in the model will limit the speed of any movements with
unreasonably high velocities. Finally, simulation can add small end-
effects to the motion, such as pendular arm sway when a character
brings his arms to his side or passive movements of the fingers.

When computing physically simulated animation, we use a con-
troller based approach whereby an actuator is placed at each DOF
which calculates the torque required to move the character towards
the desired configuration. We use an antagonistic formulation of
proportional-derivative control, following Neff and Fiume [2002].
The control law is written as

T =k (0 —O0)+ ku(On — 0) — ka0, (10)
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Pi

Si hj Pis1

Fig. 13. The end times ¢;_; and e; are constraints specified by the gesture generation module. The remaining timing of the after-strokes must be calculated

to fit into these intervals. Here % indicates a hold, p a prep and s a stroke.

Table IX. Gains on Each Track

Main Track Offset Track
Initial Gains (ki k) = CO — Ouper) (kg k) = CO) — C(O — Ouper)
End Gains (kp, kr) = C(Omain) (ks k) = COupserz + Oain) — C Ornain)

where 7 is the torque generated, 6 is the current angle of the DOF
and @ is its current velocity. 6, and 6y are the low (L) and high
(H) spring set points which serve as joint limits, k;, and ky are the
corresponding spring gains, and k is the gain on the damping term.
The tension 7 or stiffness of the joint is taken as the sum of the two
spring gains: T = k; + ky.

Consider the stroke phase of a “cup” gesture (Figure 3). When
this phase begins, the spring gains for the current pose and the gains
needed for the desired pose at the end of the stroke are computed for
each DOF used in the motion. The movement is generated at each
time step by interpolating between these gain values, determining
the torque that the current gain values will generate given the cur-
rent state of the character, and then using the equations of motion
to determine accelerations that are twice integrated to update the
position of the character. The torques generated by gravity at the
start and end pose are calculated using the current state of the char-
acter and an estimate of the end state. The gain values are computed
to compensate for these torques (this process is represented by the
function C below). This allows joint tension to be varied during a
movement while still ensuring joint positioning that is accurate, at
least at steady state.

In our system, offset tracks are summed with the main track to
produce final control values. In kinematic simulation, each track
contains angle data that can be directly added. In physical sim-
ulation, we add the gains. Consequently, gains must be calcu-
lated across tracks such that the they will add to the correct val-
ues to produce the desired angles. A function C can be defined
which takes a desired angle 6 and computes the opposing spring
gains (i.e., (ky, k) = C(0)) that will balance the forces acting
on the limb such that the equilibrium angle of the limb is 8. This
function must perform gravity compensation. Given C, the rules
summarized in Table IX can be used to compute gains on each
track.

These rules follow from Equation (10). € is the current angle for
the DOF at the start of the movement and 6, is the current offset
angle. For the end point gains, 6,4, 1s the desired value on the main
track at the end of the transition and Oer> is the desired offset
value at the end of the transition. These values are estimated based
on the transition curves associated with the DOF and offset tracks.
The tension is kept the same for each component during a transition,
but the start and end times of the main and offset curves do not need
to be the same.

Aside from the balance problem which we mitigate by using
springs to hold the feet in position, one of the main difficulties en-
countered with controller based simulation is setting the gain values
appropriately to generate the desired visual appearance. The iner-
tia weighting technique presented by Zordan and Hodgins [2002]
provides a good initial estimate for joint gains. We augmented this
by an automatic sampling procedure that takes repetitions of a pro-
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totypical movement and computes gain and damping values that
would yield a specified overshoot for a given DOF (e.g., a two-
degree overshoot in elbow angle at the end of the transition). This
yields tables of tension and damping values that are useful for fine
tuning the parameters when required. This tuning process is done
once per character and then used to generate all animations. During
retraction phases, we relax the character’s hands. The gains used
for this are calculated based on the approach described in Neff and
Seidel [2006].

The rapid, time-synchronized movements in gestural animation
are a challenge to model using a proportional derivative control
approach due to the damping needed to stabilize the system. The
actuators include damping, which is important for producing realis-
tic motion. However, as we wish to operate at relatively low-tension
levels that will enable the movement to be enhanced by many of the
benefits of physical simulation listed above, the damping in the sys-
tem will introduce lag. This is particularly significant when dealing
with short duration, high velocity movements with precise timing.
The lag causes two problems: first, it means that the movements
will be slightly slower and so will be behind their desired time con-
straints. Second, if the kinematic trajectories are used as the basis
of the PD-control, the extent of the movement will be reduced in
many cases as the movement will not have time to reach the desired
end-point before the control trajectory changes direction. We must
compensate for both of these effects.

To ensure that simulated movements satisfy the script timing,
we moved the start time of all poses earlier in dynamic simulation.
Empirical tests showed —0.12 s to be an appropriate offset. With
this offset, the initial time of transitions corresponded well to that
seen in the kinematic motions. There are two potential ways to
maintain the extent of the specified motion: the desired trajectory
curves could have their extent increased, pulling the motion closer
to the actual target, or the duration of the movements could be
shortened and pauses inserted, allowing the actual movement to
“catch-up” with the desired trajectory. For most cases, we use the
latter approach. The pauses allow time for the motion to complete
before a direction change begins. The update rule for the duration of
strokes, d, is: d; = min(d;, max(.15, d;—.3)) and the update rule
for the duration of preps, d,,, is: d, = min(d,, max(.1, d; — .15))
where the basic intuition is to reduce the duration of the motion to
allow completion while still maintaining some minimal transition
time. The offsets were determined on test motions, with a shorter
offset being used for preparations as they normally have shorter base
durations.

In the case of progressives, the continuous timing of the motion
is particularly important, so we increase the extent of the transition
curves rather than shortening the duration of the movement com-
ponents. This is achieved by multiplying the angular span of the
movement « by a factor of 1.6.
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Fig. 14. Frames of MR gesturing from the video corpus and frames of the same movement from animations recreated from the corpus. Note: In the fourth

pair, MR is making a RH gesture and his left arm is at rest.

Table X. Comparison of Strengths of Kinematic and Dynamic Approaches to Animation Generation

Advantages of Kinematic Animation

Easier to precisely control timing.

Takes less time to compute, so is more suitable for real time applications.

No tuning is required.

Advantages of Dynamic Animation

Small oscillations/overshoot at the end of movements reflect momentum. Fast movements will cause small oscillation in the final position
at the end of the movement that will not occur for more controlled, slow movements and are absent in the kinematic animation. This
effect is most obvious when a character drops his arm to his side, producing pendular motion, but also occurs at the end of strokes and
other gesture phases.

Gravity will vary the relaxed hand-shape based on the orientation of the palm whereas kinematic hands remain stiff.

Arm movements cause some force transference into the torso that generates slight deformations to the torso adding realism.

Secondary movement is included. For instance, when a character rotates, there is a slight swinging of the arms that is lacking in the
kinematic version.

Better modeling of interrupted movement. For example, in one sequence JL drops his hand towards his side, but then begins another
movement just before his hand reaches his side. The dynamic model nicely captures the transition from passive to actively controlled

movement.

A variable time step Rosenbrock integrator [Press et al. 1992]
is used to compute the motion using simulation code from
SD/Fast [Hollars et al. 1994]. A 58 s MR sequence computed in
14 minutes and a JL generated sequence of the same length took
10.5 minutes on a 3 GHz Pentium 4.

7. RESULTS

A video was produced for this work that includes three pairs of ex-
ample animations produced by our system for the two subjects. In
the first example, we show for each subject a re-creation of a par-
ticular sequence of their video corpus. The gesture scripts for these
sequences are created directly from the video annotation (Figure 2),
and kinematic animation is used. These sequences validate both the
fidelity of the annotation process and the ability of the animation
system to generate the specified movement in the gesture script. A
comparison for several gestures of a recreation of MR data to the
original corpus is shown in Figure 14.

The second examples use the same audio tracks as the first, but
generate new gestures based on each speaker’s respective gesture
profile. Since this input was also part of the training data we sub-
tracted the statistical data for these particular samples from the pro-
files before generating the new gesture scripts. These sequences
were dynamically simulated. Although the generated gestures gen-
erally differ from the original (or the recreation) the animations dis-

tinctly reflect the gesticulation patterns of the modeled individuals.
The resulting animations present effective gesture timing, synchro-
nized with the original audio, and gesture forms that are consistent
with the modelled subjects. This offers validation for the generation
model.

The final pair of examples show gesture sequences generated by
each of the subject models and dynamically animated for a new
passage of synthesized English text that is not contained in either
video corpus. This demonstrates that our system can operate on
novel text and is language-independent, since MR’s gesture profile
was built on German training data. The video also illustrates the role
movement plays in creating the overall impression of an utterance.
Even though the timing of the speech is unlike that of either subject,
the resulting animations are characteristic of each speaker.

A side by side comparison of kinematic and dynamic animations
reveals small differences in timing, but the overall synchronization
remains intact. A comparison of the strengths of each approach to
animation is included in Table X. The strengths of the kinematic ap-
proach relate to computational cost and ease of use. The strengths
of the dynamic approach, meanwhile, relate to the addition of subtle
movement details that are lacking in the kinematic animation. Al-
though subtle, we feel these effects help give the character a sense of
“aliveness” that is less strong in the kinematic animation. This fur-
ther validates the use of physical models and shows their relevance
to synchronized gestural animation, where they have not previously

ACM Transactions on Graphics, Vol. 27, No. 1, Article 5, Publication date: March 2008.



5:20 .

M. Neff et al.

Fig. 15. A matter of style: Different gestures were generated for contemporaneous frames of the “Star Wars” animations for JL (top row) and MR (bottom

TowW).

been used. At the same time, as better tuning and control methods
are developed, we postulate that the contribution of physical models
to movement quality will become even more substantial.

A side by side video comparison of the two models used on the
same text sequence nicely shows the style differences between the
two models (JL vs. MR). Frames from this are shown in Figure 15.
Worth noting, not only does the system produce different gestures
for each speaker, it also generates very different, yet still effective,
timing patterns. For instance, the last pair of frames in the figure
show a case where a gesture is generated for the JL model but not
the MR model.

Overall, the animations show a high variation in gesture shape,
good synchronization with speech and a nice overall flow of move-
ment. High variation stems from using positional data from the
GestureDB and from creating multiple strokes. The good synchro-
nization validates our algorithms for aligning main stroke and after-
strokes, using Steedman’s concept of focus as an important gesture
placement indicator. Finally, the overall flow is due to our introduc-
tion of the gesture unit as an organizational higher-level entity.

7.1 Validation

An evaluation study of our system was conducted that shows that the
gestures produced by the system are recognizable as having the style
of the specific performer modeled.'* For this study, 26 independent
reviewers were recruited, aged 24 to 46; 6 female and 20 male,
all nonexpert in the field of gesture modeling and/or animation.
In a learning phase they were shown video clips of the original
performers, JL and MR. Two clips of each performer were used,
about 5 minutes in total. These clips were outside the training corpus
used for our statistical models. The order of the clips was varied
across subjects to avoid order effects.

In the first test (Test 1) we showed them one video clip of gener-
ated gestures and asked “Whose gesturing style is imitated in the first
animation?” The JL model was used for half of the subjects and the

4This experiment was done using a slightly earlier version of the system.
The quality of the animations has subsequently been improved.
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MR model for the other half. The animations for the novel text were
used in the experiment (these are the last two clips discussed above)
which are obviously outside our training corpus. Afterwards, in the
second test (Test 2) we showed a side-by-side clip of both variants
of the novel text clips (modeled on JL + modeled on MR) and asked
subjects to “Please indicate which clip is animated more in the style
of Jay Leno (JL, American) and which more in the style of Marcel
Reich-Ranicki (MRR, German).”

The result of Test 1 was that subjects selected the correct original
performer 69% of the time, which is significantly above chance
(1(25) = 2.083; p < .05). The result of Test 2 was that sub-
jects correctly assigned the original performer to the side-by-side
characters in 88% of the cases which is also significantly above
chance (#(25) = 6.019; p < .001). In Test 1, there was no sig-
nificant difference in recognizing JL compared to recognizing MR
(t(24) = .5708; p = .57). For both tests, there was no noticeable
dependency of subject performance on gender, age, familiarity with
English/German or with either performer.

We did not formally evaluate how subjects identified speakers, but
based on post survey discussions, it appears that different subjects
used different clues. Some relied on a few distinctive gestures that
they thought were typical for the performer, while others paid more
attention to rest pose and others focused on their overall impression
of the sequences.

The evaluation clearly shows that the produced animation reflects
the style of a specific performer. This worked equally well for both
performers. When putting the animations side by side, the discrimi-
nation task is even easier, as reflected by the higher scores. It should
be noted that the selected clips were generated on synthetic text for
which we did not model the timing and speaking pattern of either
speaker. This makes the recognition task harder as these important
aspects of personal style were absent in the stimuli, providing less
information than would be present in a clip of either speaker.

7.2 Expertise Required to Use the System

Our approach requires manual work that can be performed by non-
experts with some training. For a more specific estimate we have
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to distinguish between the labour-intensive analysis phase and the
runtime system.

In the analysis phase, for the coding of words, theme/rheme and
discourse segments a linguistic background is helpful. The coding
of gesture phases and their spatial properties requires no special
prior knowledge. For encoding the lexical affiliate, some knowl-
edge of the gesture literature, especially on gesture inventories and
abstract/metaphoric gestures [McNeill 1992], must be acquired in
training. Creating the animation lexicon requires good observation
skills as the annotation is based on categorizing what the performer
is doing in still images. The annotator must also be familiar with
the meaning of the parameters in the system so that he can represent
what he observes. In all, we estimate a training period of 1-2 weeks
for the analysis phase.

In the runtime system the manual labour consists of preparing the
input data, that is, adding theme, rheme, focus, and utterance seg-
mentation, and extending the semantic tag look-up table by adding
unknown words that fit into one of the categories. For both tasks a
linguistic background is helpful. We estimate a training period of
less than a week. However, note that automated approaches for re-
constructing these data from plain text exist, for example, in BEAT
[Cassell et al. 2001], and could be added to our (runtime) system to
make it run without manual work.

7.3 Data-Specificity of the Approach

While our approach strives to model individual style in gesture be-
haviour, it is at the same time quite general. The animation can
handle a very wide range of possible gestures and the style-specific
data is encapsulated in character-specific gesture profiles, separate
from a general gesture generation algorithm. In this section, we dis-
cuss the limits of the system in terms of domain, range of gestures
and cultural dependency.

Our use of semantic tags make the approach independent of both
language (German/English) and conversational domain. Looking at
the table of semantic tags (Table VII) one can imagine that they are
applicable to many domains. In fact, the data for our two speakers
comes from quite different domains (book review vs. comedy). In
our demo, we explicitly chose input text from a totally new domain,
the prologue from the Star Wars episode IV movie, to show that our
approach transfers to other domains.

While the semantic tags themselves are quite domain-
independent the concrete look-up table must be extended for each
new text. Therefore, the lookup table should be replaced by an au-
tomated approach. The animation lexicon must be extended each
time a speaker is added; if the hypothesis is true that all people from
the same cultural group draw from a single repertoire of gestures
(excluding iconics), then this work becomes less with a growing
set of profiles. Even for our two speakers, we found a considerable
overlap in gesture lexemes. However, the lexicon of gestures may be
culture-specific. This means that adding a person from a culture dif-
ferent to the corpus may entail more work on the animation lexicon
as opposed to adding people from the same group.

As discussed previously, the parameters in the animation lexi-
con most related to the particular individual performing the gesture
are those related to posture changes. After-strokes might also show
individual varation, but there is not enough data to verify this. It
appears that palm orientation is defined more by the lexeme with
limited variation across individuals.

Although the range of produced gestures is quite large, our ap-
proach misses out on iconic gestures that illustrate complex spatial
content (e.g., the trajectories of two colliding cars) or make deic-
tic reference to present objects (e.g., pointing to a moving object).

However, such gestures could be added on top of our approach by
a “deep” generation engine.

8. CONCLUSION AND DISCUSSION

This work presents a system for generating believable gesture an-
imations for novel text that reflect the gesturing style of particular
individuals. It moves beyond previous approaches by creating a
statistical model of particular individuals; modeling gestures at a
high level of detail; modeling complex gestures, including highly
variable after-strokes and progressives; building gesture units that
flow well and synchronize effectively with speech; and using phys-
ical simulation to enhance the final animation. Gesture units are a
particularly effective construct. We generate stretches of gestures
and infer timing parameters from the interdependence of the ges-
tures contained in one unit. This makes gesture flow much more
natural as the gestures are connected by holds or directly succeed
each other while positional parameters are fitted depending on the
preceding gesture. We found the alignment of end times between
gesture strokes and speech correlates performed well. Finally, we
exploit Steedman’s concept of focus to synchronize gestures not
with the directly related part of the utterance (lexical affiliate) but
with the focus. The successful timing this produces breaks the myth
common in the literature of a gesture having to occur slightly before
its semantic correlate.

It is worth highlighting the effective division of data between the
gesture generation process and the animation process. The gesture
generation system contains the data necessary to both synchronize
gestures with speech and to capture the spatial gesturing pattern of
particular individuals. The animation system supports the reuse of
labour through the animation lexicon, hides many details of anima-
tion production from the gesture generation process and effectively
augments the generation data to produce convincing gestural ani-
mation.

Automatically creating animations of talking characters that re-
flect a specific subject’s style and will satisfy a human observer is
a very challenging task, and much work remains to be done. First,
although the annotation scheme is simple, elegant and effective, the
process is currently labor intensive. We see significant opportunity
for automation in the process. Research has already been published
on tracking JL's face and hands [Tan and Davis 2004], which can
likely be extended for use in our workflow. Second, certain move-
ments were avoided. For instance, handrub motions require a high
quality collision model; iconic gestures need a deeper model of se-
mantics. As well, the system should be extended to model non—hand
based gestures such as head points and shoulder shrugs without ac-
companying hand movement. Better models for torso engagement
while gesturing are also worthwhile. Another interesting avenue for
future research is to directly model variations in expressivity. For
instance, the amount of posture variation present in the performance
of a lexeme is likely correlated with the amount of emphasis, ex-
citement, anger or other intentional parameters related to how the
subject is expressing the idea. Finally, we conjecture that better use
of physical models can further improve the quality of the animations.
People continuously modulate the tension in their bodies while mov-
ing, in a much more complex way than modeled here. Despite this,
it is worth noting that this work demonstrates that physical simula-
tion can add subtle details to the animation of gesturing characters.
Using physical simulation for motion generation offers the poten-
tial to unify skeletal character animation with secondary effects like
cloth modeling, all within the physical simulation realm. This will
help ensure that character motions exert reasonable forces on these
secondary models and offers the potential to create a continuous
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representation from limb movement, to muscle and skin deforma-
tion, to cloth and hair.

APPENDIX

Gesture Script Example

A section of a gesture script is included below. See Section 5.3 for
a discussion of the gesture script.

BEGIN_BODY_ROTATIONS
ROTATE_BODY right 10.073230361

END_BODY_ROTATIONS

BEGIN_HEAD_ROTATIONS
ROTATE_HEAD right 9.673230361
ROTATE_HEAD front 17.305170822

END_HEAD_ROTATIONS

2
#

BEGIN_G_UNIT

BEGIN_GESTURE
# start time = 8,704
# Triggered by: "civil war" AGGRESSION 10,473 - 11,188
lexeme=Fist # from sample 32 (random)
handedness=2H
handshape=fist
type=prep+stroke+hold
# total stroke duration = 1,685
stroke.trajectory=straight # from sample 32
hold.time.duration=0.4880431763966211
stroke.time.duration=0.6936347179353073
stroke.time.end=9.897439842000004
stroke.number=3
mstroke.0.time.end=10.485929679
mstroke.l.time.end=10.88846035
stroke.position.start.2h_distance=0.6537408296950502
stroke.position.start.height=shoulder
stroke.position.start.distance=close
stroke.position.start.radial=front
stroke.position.start.inclination=normal
stroke.position.end.2h_distance=0.8116517219742472
stroke.position.end.height=chest
stroke.position.end.distance=close
stroke.position.end.radial=front
stroke.position.end.inclination=normal
# end time = 11,377

END_GESTURE

# ran. offset 0,289
# offset -1,291

BEGIN_GESTURE
# start time = 11,377
# Triggered by: "galactic empire" TITLE 16,944 - 18,005 [init]
# sync’d with Init words "rebel space"
lexeme=Umbrella # from sample 77 (random)
handedness=LH
handshape=open-rlx
type=prep+stroke
stroke.trajectory=straight # from sample 77
stroke.time.duration=0.2074158836033774
stroke.time.end=12.08391941
stroke.number=1

# offset -0,535

stroke.position.start.height=belly
stroke.position.start.distance=normal
stroke.position.start.radial=out
stroke.position.start.inclination=normal
stroke.position.end.height=belly
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# ran. offset -0,013

stroke.position.end.distance=normal
stroke.position.end.radial=out
stroke.position.end.inclination=normal
# end time = 12,084

END_GESTURE

. # more gestures

RETRACT_GESTURE pose=at-side
END_G_UNIT

. # more gesture units
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