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Abstract. Virtual humans still lack naturalness in their nonverbal be-
haviour. We present a data-driven solution that moves towards a more
natural synthesis of hand and arm gestures by recreating gestural be-
haviour in the style of a human performer. Our algorithm exploits the
concept of gesture units to make the produced gestures a continuous flow
of movement. We empirically validated the use of gesture units in the
generation and show that it causes the virtual human to be perceived as
more natural.
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1 Introduction

Researchers and users agree that interactive Virtual Characters (VCs) still lack
naturalness in their movements, be it facial expression, gesture or posture changes.
A recent state-of-the-art report [1] describes VCs as “wooden” and lacking vari-
ety in response, whereas human beings are all unique and have limitless variety.
Although photorealism of computer graphics is steadily advancing “behavior
may be more important than the visual realism of the character”. Psychologists
[2] and animators [3] alike confirm the important role of a visible and consistent
personality for an animated character to make it more human-like and appealing.
While research in the area of gesture synthesis has been active and successful for
over two decades [4, 5] we believe that current research systems can be pushed
in a variety of ways. First, most systems use a limited range of gestures and only
a few systems can produce variants consistent with an individual style. Second,
the produced gestures are rarely connected to form a fluid stream of gestures [6].
Finally, it is still hard to evaluate how natural the generated gestures are and
to what aspects this naturalness is owed [7, 2].

In this paper we present a data-driven approach to synthesize gestures for
a VC using procedural animation5 [8–10]. Our approach features the recreation
5 Video samples of animations can be found on http://www.dfki.de/̃ kipp/iva07
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of the gesture style of a human performer, the production of a broad range of
gestures, automatic synchronization with speech and the use of dynamic anima-
tion. While all technical details of the system are covered by Neff et al. [8], this
paper can be regarded as a complement, giving a high-level overview, to then
zoom in on gesture unit production. This sets the background for a new user
study that validates the hypothesis that using gesture units makes the speaker
appear more natural.

A gesture unit (g-unit) is a sequence of contiguous gestures where the hands
only return to a rest pose at the end of the last gesture [11]. The concept stems
from a proposed hierarchy of levels: on the lowest level, movement is seen as
consisting of so-called g-phases (preparation, stroke, hold etc.), on the middle
level these g-phases form whole gestures, called g-phrases, and on the top level
gestures are grouped to g-units [12, 6]. In his extensive gesture research, Mc-
Neill [12] found that most of his subjects performed only a single gesture per
g-unit most of the time; we call such gestures singletons. When we analyzed
our speakers Jay Leno (JL) and Marcel Reich-Ranicki (MR), both well-known
TV talk show hosts with active and appealing gesture behaviour, we found a
different distribution (column N displays the percentage of g-units containing
N gestures, first row taken from [12]):

1 2 3 4 5 6 >6
McNeill’s subjects 56 14 8 8 4 2 8
Speaker JL 35.7 15.7 17.1 5.7 11.4 5.7 8.6
Speaker MR 33.3 16.7 11.1 14.8 9.3 3.7 11.1

JL and MR preferred “longer” g-units, and we wondered whether this was one of
the reasons why their gestures were much more interesting to watch than those
of the average layperson. Therefore, we not only integrated the production of
g-units in our gesture generation algorithm but also conducted a user study to
examine the effect of g-units on the perception of the VC.

2 Related Work

Data-driven approaches based on motion capture can produce high quality move-
ment, but motion variation is limited. Stone et al. [13] achieve some variability
and gesture-speech synchrony by splicing and warping motion captured pieces,
but as the authors indicate, the system does not have the generality of procedu-
ral animation. Our approach is also data-driven, but we annotate a higher level
gesture representation that allows us to make use of the flexibility of procedural
animation, rather than relying on replaying low-level motion data.

Kopp et al. [14] based their system on the Sketch Model [15] and can create
gestures from arbitrary form specifications and handle co-articulation. While
they focus on iconic gestures in spatial domains where the form-meaning re-
lationship between speech and gesture is quite clear, we focus on metaphoric
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gestures where this relationship is less clear and therefore, lends itself to statis-
tical modeling. We share with the Sketch Model the processing of underspecified
gesture frames that are gradually enriched in the planning process.

While many systems require a complex input specification, the BEAT sys-
tem [16] works on plain input text and reconstructs linguistic features (e.g.,
theme/rheme) to generate synchronized gestures. Our system shares this gen-
eral concept but instead of using hand-made, hard-coded rules for gesture gen-
eration we automatically extract them from video data of human speakers. Lee
and Marsella [17] also systematically examine a video corpus but their gener-
ation rules are still hand-made. While they do not explicitly model personal
style they take the affective state into account. However, compared with these
two approaches, our animation engine allows a more fine-grained specification
of gesture phase structure, similar to [18, 14]. Like our system, Hartman et al.
[18] can generate multiple strokes as part of their expressivity parameters, but
our system includes more detail concerning phase structure and timing. Sev-
eral previous systems have been designed to animate expressive arm gestures
(e.g. [19–21]). Our controller-based approach to physically simulated animation
builds on similar work with hand-tuned controllers [22, 23] and using controllers
to track motion capture data [24], but is the first animation system to use con-
trollers to synchronize body movement with speech.

There is limited other work on modeling the gesturing style of a specific per-
former, although more abstract models are starting to appear [25]. We propose
modeling specific human performers as a way to achieve more natural and varied
behaviour. While sharing aspects with other gesture systems, we are the first to
explicitly produce g-units and to evaluate the impact of g-units in a separate
user study.

Fig. 1. Offline phase workflow: For every human speaker this work pipeline has to be
completed once. The resulting data is used in the online system to generate gestures
in the style of the modeled speaker for arbitrary input texts.
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3 Gesture Generation and Animation

Our approach is mainly data-driven, using a video corpus of the human per-
former, but also incorporates general, character-independent mechanisms. A
labour-intensive offline or preprocessing phase has to be completed once for
each new human speaker (Figure 1). It results in a gesture profile of this par-
ticular speaker and an updated animation lexicon. The actual runtime or online
system can then produce gestures in the style of one of the modeled performers
for any input text (Figure 2).

Fig. 2. Online processing: The runtime system can take arbitrary input texts (con-
taining additional mark-up, see Section 3.3) and produce synchronized conversational
gestures in the style of a modeled human performer. Gesture profiles can easily be
exchanged and even mixed.

3.1 Offline: Annotation of Speech and Gesture

Our corpus consists of about 18 minutes of digitized video, 9 mins per speaker,
from regular TV material where the speaker’s face, torso and hands are visible.
To prepare the video corpus for automatic analysis, a human coder transcribes
speech and gestures according to our annotation scheme [9]. The transcription of
this corpus results in 229 gestures (70 g-units) for speaker JL, and 192 gestures
(54 g-units) for MR.

Coding starts with transcribing speech in the PRAAT6 tool [27]. The tran-
script is imported to the ANVIL7 tool [28] where gesture annotation is performed
on three separate tracks, as shown in Fig. 4. On the first track, g-phases (prepa-
ration, stroke, hold etc.) are transcribed [6, 29]. In the track below the coder
several of these phases into a g-phrase which basically corresponds to the notion
of a “gesture” in everyday language.

On this track, the bulk of the annotation work takes place: selecting the lex-
eme, specifying form parameters and the link to speech. The lexeme refers to
6 http://www.praat.org
7 http://www.dfki.de/̃ kipp/anvil
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Fig. 3. Screenshots showing four lexemes from our gesture lexicon. The upper row
shows samples performed by MR, the lower row shows schematic drawings (for read-
ability) of speaker JL performing the same lexemes. The gesture lexicon contains ad-
ditional textual descriptions on handshape, palm orientation, trajectory etc.

an entry in a gesture lexicon [10, 26] that we assembled beforehand, where 39
gestural prototypes, i.e. recurring gesture patterns, are described by form con-
straints and illustrations (Figure 3). These lexemes were partly taken from the
gesture literature and partly extracted from our corpus. Of the 39 entries in our
lexicon, 27 are used by both speakers, which is a large overlap that demonstrates
a certain generality of the approach.

To describe gesture form the coder specifies handedness (RH, LH, 2H), tra-
jectory (straight or curved), and the hand/arm configuration at the beginning
and end of the stroke (only at the beginning of the hold for stroke-less gestures).
The latter is specified with 4 attributes: three for the position of the hand and
one for arm swivel. Finally, to mark the gesture’s relation to speech we encode
the lexical affiliate which is the word(s) whose meaning is most closely related
to the gesture [30, 29] as a symbolic link to the respective word(s) on the speech
track. For temporal reasoning we also encode the word(s) that co-occur with
the gesture stroke. In the third track the gesture phrases are again combined to
make up g-units [11, 6, 12]. See [9] for a full description of the coding scheme.

3.2 Offline: Modeling Gesture Behaviour

In the modeling phase we build a gesture profile from the annotations. First,
the speech transcription is preprocessed to abstract away from surface text. The
words are reduced to their word stem and then mapped to so-called semantic tags
like AGREEMENT (”yes”), PROCESS (”create”, “manage”), QUEST PART
(”why”), and PERS NAME (”Michael Jackson”). The tags form a thin semantic
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Fig. 4. Manual annotation was done in the ANVIL video annotation tool [28] on sep-
arate tracks for speech transcription and gesture annotation. Gestures were annotated
on three hierarchically organized tracks for phase, phrase and unit.

layer between surface text and gestures, containing aspects of communicative
function (e.g. AGREEMENT, QUEST PART) and semantics (e.g. PROCESS).

After preprocessing we use the annotated lexical affiliate links between ges-
ture and speech to compute the conditional probability that gesture g occurs
given semantic tag s. We also build a bigram model of gesture sequence, i.e.
conditional probabilities that gesture gi follows gi−1. We do the same for hand-
edness, i.e. we model the probability that gesture g is performed with the right,
left or both hand(s), and store a bigram model of handedness sequences. Fi-
nally, we store the average number of multiple strokes and the average distance
between stroke and co-occurring word per lexeme, and the general gesture rate
(details in [8]). In the GestureDB we store every gesture occurrence, together
with the spatial data from the manual annotation. It is not a collection of ani-
mation clips but rather contains essential form data about the gesture’s expres-
sive phase. This data includes spatial “pass through” points, indicating hand
positions at the beginning and end of the stroke, and the shape of the movement
trajectory (straight or curved).

In conjunction with the gesture lexicon we created an animation lexicon
where animation-relevant data is stored for each lexeme, including palm orien-
tation and posture changes, as well as warps to the motion envelope. For each
new speaker, the lexicon can be (manually) enriched with character specifc in-
formation, including a default posture and succession pattern. The animation
lexicon also defines the form of the after-strokes in a multiple stroke. A multiple
stroke in a gesture contains many strokes: We call the first of these strokes main
stroke and the subsequent ones after-strokes. After-stroke information generally
involves small hand and forearm movements and specifying whether a hold phase
is present.

3.3 Online: Generation of Gestures and G-Units

The online system transforms novel text into an animated sequence of gestures.
The input text must be marked-up with temporal word boundaries, utterance
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segmentation and annotation of rheme and focus [31, 16]. Currently, we add
this information manually. The text is transformed to a graph where nodes
represent time points and arcs represent words or gestures. Words are stemmed
and mapped to a semantic tag, just as in the modeling step. The generation then
proceeds in two steps: gesture creation/selection, and g-unit formation.

Gesture creation and selection Using the speaker’s gesture profile, we first
create a large number of underspecified gesture frames which are then thinned
out by a selection criterion. Gesture candidates are all gestures whose condi-
tional probability to co-occur with a semantic tag exceeds a threshold of 0.1.
One copy of the gesture is placed over the semantic tag in the graph. If the
semantic tag is within a rheme, another copy is placed on the focus of the rheme
[31]. For selection, we utilize the n-gram models to construct a sequence with
maximum likelihood that observes the speaker’s gesture rate. We use a similar
approach to determine the handedness. Handshape is added according to our
animation lexicon. After this step, we have a sequence of underspecified gesture
frames that contain lexeme, handedness and handshape. The position in the
graph determines the word(s) the gesture has to be synchronized with.

G-unit formation The gesture hierarchy of phases, phrases and units is hy-
pothesized to correspond to levels of speech phrase organisation. For instance,
Kendon [11, 32] suggested a correlation between intonation units and g-units.
Such concepts go back to the hypothesis that speech and gesture originate from
a single source, called growth point [12] or idea unit [32]. In our algorithm we
try to approximate these concepts.

We “grow” g-units by merging neighbouring gestures (distance < 1.5 sec)
within a single utterance segment, taking utterance segmentation as a crude ap-
proximation of intonation units. Note that the distance criterion is not speaker-
dependent but could be made so to model the fact that speakers prefer longer
or shorter g-units. Now, gesture phases, spatial parameters, and gesture-speech
timing remains to be specified. Phase structure is determined as follows: If, for
two consecutive gestures gi−1 and gi, there is time for a preparation (.5 sec),
then insert one. If not, insert a spatial constraint marker that gi’s start posi-
tion must match gi−1’s end position. Now find a suitable gesture, using lexeme
and spatial constraints, from GestureDB (randomize over possible options) and
generate multiple strokes randomly using the speakers mean value and standard
deviation for this lexeme. Resulting temporal conflicts with the succeeding ges-
ture gi are resolved by either moving gi back in time (up to a certain limit) or
eliminating it altogether.

We synchronize gesture and speech by positioning the end of the stroke at
the end of the corresponding word, using a random offset based on the speaker’s
mean value. For multiple strokes we synchronize all after-strokes with word end
times of subsequent words, enforcing a minimum time span. For stroke-less ges-
tures we synchronize the start of the independent hold [6] with the start of the
word. In a final wrap-up phase we subtract 0.3 sec from all main stroke times
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(0.12 sec for after-strokes in a multiple stroke) as we empirically found this offset
necessary to make the gesture timing look natural, and fill in all gaps within a
g-unit with holds.

As Kendon [11] pointed out, the retraction phase is a property of the g-
unit and not of a single gesture because within-unit gestures cannot have a full
retraction by definition. We therefore generate a retraction phase for each g-unit
using a simple heuristic to determine the rest position: if the distance to the
following g-unit is small, retract to ’clasped’, if medium retract to ’at side’, if
large retract to ’in pockets’. The results of the gesture generation are written to
a gesture script containing the lexeme, timing and spatial information computed
above.

3.4 Procedural Animation

The role of the animation engine is to take the gesture script as input and output
a final animation. It does this in three main steps. First, it computes additional
timing data and adds information from the animation lexicon (Section 3.2). Sec-
ond, it maps all data to a representation suitable for generating animation. This
representation is essentially a keyframe system and has tracks for every Degree of
Freedom (DOF) of the character’s body. The tracks are populated with desired
angles at specific points in time and transition curves that specify how the DOF
values should change over time. The basic keyframe representation is augmented
with offset tracks (see below) that are summed with the main tracks to determine
the final desired values for the joints. Additional tracks are used to control real
time behaviour, such as gaze tracking. Once this representation has been popu-
lated, the third and final step is to generate the actual animation. The system
can generate either dynamic, physically simulated skeleton motion, or kinematic
motion. The system also produces eye brow raises on stressed phonemes and lip
synching . Some of the key components of the system will be described below.
Further details can be found in [8].

The gesture script does not contain all the data necessary for defining an
animation and is hence augmented by the animation engine. The first step in
this process is to complete the timing information. The animation engine also
resolves possible spatial conflicts. These occur due to the coarse-grained spatial
annotation, which can fail to record small hand separations and movements.
Offsets are automatically added to deal with these cases. The rest of the aug-
mentation involves adding the gesture-specific data from the animation lexicon,
all of which is taken into account when the gesture poses are solved for and
written into the low-level representation.

A pose is calculated at each phase boundary (e.g. the start and end of a
stroke) using a series of local IK routines for the arms, wrists and lower-body
chain. This is augmented with a feedback based balance controller and automatic
collarbone adjustment based on the height of the hands. The wrist targets are
defined in a body relative way, which is important for allowing the gestures to
move appropriately with the body. Realtime processes provide gaze tracking and
balance adjustment.
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The offset tracks are used to layer different specifications together, such as
when combining body rotation with gestures. They are also used to curve the
spatial trajectory of motions by adding offsets in joint space. This allows a stroke
to be specified with a straight or curved trajectory. It also allows the creation of
more complicated gestures such as progressives, which feature the forearm and
hand making circular motions.

When computing physically simulated animation, we use a controller based
approach whereby an actuator is placed at each DOF which calculates the torque
required to move the character towards the desired configuration. We use an an-
tagonistic formulation of proportional-derivative control, following [33]. In order
to synchronize the gesture timing with the specified timing and to preserve the
spatial extent of the motions, we both shift the start time earlier and shorten
the duration of each movement when doing dynamic simulation. The dynamic
animations contain additional effects due to momentum, such as pendular mo-
tion when a character brings his hand to his side or wrist overshoot when the
forearm is moved rapidly. A variable time step Rosenbrock integrator [34] is used
to compute the motion using simulation code from SD/Fast [35]. Whereas kine-
matic animation runs in real time, physical simulation is only about one tenth
real time so must be pre-computed and played back when needed.

3.5 Validation: Recognizability of Gesture Style

We validated the system with an emprical study where 26 subjects were exposed
to video clips of generated gestures [8]. After a short training phase where the
subjects watched original clips of the performers JL and MR, they went through
two tests. In Test 1 the subjects watched a single animation, produced on a novel,
synthesized text (prologue from “Star Wars”), and were asked which performer
(JL or MR) it was based on. In Test 2 they saw a side-by-side screening of
animations based on each model and were asked to identify which was which.
In Test 1, subject selected the correct performer 69% of the time (t(25)=2.083;
p < .05). In Test 2, subjects achieved, as expected, a higher success rate of
88% (t(25)=6.019; p < .001). These results show that the subjects were able to
recognize the human original, based on only the gesture behaviour.

4 Evaluating Gesture Units

Despite the encouraging validation of our approach, evaluating nonverbal be-
haviour of VCs remains a difficult task [7, 2]. One strategy is to single out one
parameter in the generation process. In our approach, a major decision was to
generate g-units instead of singletons. So our underlying hypothesis was: Using
g-units makes our VC look more natural.

To test the impact of g-units beyond naturalness we selected a number of
dimensions for personlity perception. We picked three dimensions from the “Big
Five” [36] (friendliness, nervousness, extrovertedness) and added dimensions of
potential relevance for VC applications, and arrived at 6 dimensions: naturalness,
friendliness, nervousness, extrovertedness, competence, and trustworthiness.
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4.1 Method

25 subjects (12 female) participated in this experiment. 14 subjects were re-
cruited in Germany, 11 in the US.

Material We prepared video material with a virtual character gesturing in two
different ways for the same verbal material8 (some English, some German). In the
U(nit) version we used the g-units generated by our system. In the S(ingleton)
version we modified the animations so that only singleton gestures occur. For
this, we replaced every hold that separated two gestures with a retraction. We
left multiple strokes intact where possible and only removed enough after-strokes
to make room for a retraction. In both versions, we replaced all rest poses with
the “hands at side” rest pose, to make the effect of returning to rest pose clearer.
We cut the material to 11 pieces of length 11-28 sec for each version (total of
2:58 min). In each piece we tried to include 2-3 g-units since in pilot studies
too short clips did not show the effect of g-units clearly enough, as frequently
returning to rest pose does not seem odd in a short clip. However, much longer
clips would have made it hard to remember the impression of the first clip after
viewing the second. We considered a side-by-side presentation which makes the
difference between the two versions very clear but weakens the generality of
the result. Pilot studies also caused us to block out the face of the VC (see
Figure 5) since subjects reported being quite absorbed by facial expressions
and head movement (gaze). The 11 clip pairs were presented in random order.
Within-pair order (S-U or U-S) was balanced across subjects.

Fig. 5. In the g-unit experiment the face was blocked out to reduce distraction.

Procedure In the instruction the subject was informed that s/he was to com-
pare two versions of the same virtual character and decide in which of the versions
the character’s behaviour was more natural, more friendly, more nervous, more
extroverted, more competent, and more trustworthy. Subjects were explicitly
requested to judge “intuitively” and to focus on the bodily behavior.

Each subject went through 11 rounds. In each round, both animation ver-
sions, labeled “A” and “B”, were shown consecutively. Afterwards, a questionaire
8 Samples of this material can be found on http://www.dfki.de/̃ kipp/iva07
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appeared with the options “A”, “B” or “undecided” for each dimension. How
much of the speech was understood was asked on a 3-point scale. In each round,
the two versions could be played repeatedly. After the experiment the subjects
were interviewed about perceived differences and answering strategies.

4.2 Results

Since our subjects came from two countries (US/Germany) we checked for dif-
ferences between the two populations with a Mann-Whitney U-test which did
not reveal differences on any of the dimensions. Separating the data according
to “speech understanding” did not reveal any differences (2-factorial ANOVA).

Looking at all clips and all subjects9, the U version was selected significantly
more often (60% vs. 40%) to be more natural than the S version (1-tailed t-test10:
t(24)=3.1062; p < .01). For the other five dimensions we found the following
results: Subjects picked the U version significantly more often as more friendly
(2-tailed t-test: t(24)=4.2774; p < .001), more trustworthy (t(24)=4.3085; p <
.001), and tendentially more often as more competent (t(24)=1.7220; p = .10).
The S version was perceived significantly more often as more nervous (t(23)=
3.7999; p < .001)11. There was no significance either way for extroversion.

We then tested whether any of the dimensions were correlated in the sense
that subjects consistently made the same decision on two dimensions (e.g., nat-
ural and friendly). We conducted a unidimensional χ2 test12 on all possible
dimension pairs. The results (Table 1) show that naturalness, friendliness, com-
petentence and trustworthiness are positivly correlated with each other, whereas
nervousness is negatively correlated with all of these. Extrovertedness is only di-
rectly correlated with nervousness.

friendly nervous extrovert competent trustworthy
natural (+) .89 (–) .20 .49 (+) .83 (+) .92
friendly (–) .17 .44 (+) .75 (+) .85
nervous (+) .62 (–) .23 (–) .19
extrovert .54 .48
competent (+) .83

Table 1. Relative frequencies of equal decisions when comparing dimensions. (+)
means that subjects made the same decision, (–) means they made the opposite decision
significantly often (all highly significant, p < .001; χ2 values omitted for readability).

4.3 Discussion

Using gesture units makes a virtual character look more natural. Our results
clearly confirmed this hypothesis. However, our interviews revealed that the
9 The “undecided” category was not considered in the analysis. For dimension natu-

ralness, we had 14% “undecided” cases. For all other dimensions 20–28%.
10 Since the data was normally distributed (verified with Kolmogorov-Smirnov one-

sample test/Lilliefors probabilities), parametric methods were applicable.
11 One subject chose “undecided” on this dimension for all clips.
12 Because of the small sample we could not assume normal distribution of the basic

population.
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effect is very subtle. Only one of the subjects was able to explicitly tell the
difference between versions. Most subjects said that the difference was very hard
to see, some plainly said they saw no difference. Those who saw differences
assumed that they were in the timing, extent or smoothness of movements,
synchronization with speech or torso deformations – these aspects were exactly
equal in both versions.

Our collected evidence suggests that for creating a friendly, trustworthy and
natural VC, the use of g-units plays a subtle yet important role. G-units may also
have a positive impact in terms of competence. If a more nervous or even unnat-
ural character is desired, singleton gestures should be preferred. However, our
experiment only discriminates between singleton gestures and g-units of length
> 1. More precise effects of g-unit length remain to be examined. It is interest-
ing to note that in the context of “gestural behaviour of virtual characters” the
dimensions naturalness, friendliness, trustworthiness and competence seem to
form one cluster where one implies the other. Nervousness stands in an inverted
relationship with each of these, and finally, extroversion is a dimension that was
left totally unaffected by the g-unit condition.

Although our goal was to make virtual humans look more natural, our results
may have implications for real humans. For instance, based on our results, a
rhetorics teacher could recommmend her students to “connect” gestures in order
to appear less nervous. While this needs to be complemented by studies on how
far the results with virtual characters transfer to human-human interaction [2],
a VC may prove an ideal research tool for the social sciences [37–39].

5 Conclusion

We presented a data-driven approach to gesture synthesis that allows the synthe-
sis of gestures on novel input text in the style of a modeled human performer,
including a validation study on the “recognizability” of the produced gesture
style. The approach not only creates a broad range of gestures but also connects
the generated gestures into gesture units to produce a smooth and fluid stream
of gestures.

We validated the positive effect of producing g-units as opposed to producing
mere singleton gestures in a user study and found that the g-unit version was
perceived as more natural, more friendly, more trustworthy and less nervous.
While the study confirmed our hypothesis that generating g-units is a definite
advantage, there is much room for further empirical exploration. The effect of
different g-unit lengths and also decisions on handshape selection or the use of
multiple strokes and various animation parameters could be studied to arrive at
a more complete set of validated principles for gesture synthesis.

Acknowledgments. We would like to thank all the subjects who participated
in our user studies, and Nuance Communications Inc. for providing us with a
text-to-speech synthesis software.
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38. Krämer, N.C., Tietz, B., Bente, G.: Effects of embodied interface agents and
their gestural activity. In: Proc. of the 4th International Conference on Intelligent
Virtual Agents, Springer (2003)

39. Frey, S.: Die Macht des Bildes: der Einfluß der nonverbalen Kommunikation auf
Kultur und Politik. Verlag Hans Huber, Bern (1999)




